DOI QR코드

DOI QR Code

Novel Systemic Therapies for Advanced Gastric Cancer

  • Kim, Hong Jun (Division of Oncology/Hematology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine) ;
  • Oh, Sang Cheul (Division of Oncology/Hematology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine)
  • Received : 2017.12.04
  • Accepted : 2018.02.26
  • Published : 2018.03.31

Abstract

Gastric cancer (GC) is the second leading cause of cancer mortality and the fourth most commonly diagnosed malignant diseases. While continued efforts have been focused on GC treatment, the introduction of trastuzumab marked the beginning of a new era of target-specific treatments. Considering the diversity of mutations in GC, satisfactory results obtained from various target-specific therapies were expected, yet most of them were unsuccessful in controlled clinical trials. There are several possible reasons underlying the failures, including the absence of patient selection depending on validated predictive biomarkers, the inappropriate combination of drugs, and tumor heterogeneity. In contrast to targeted agents, immuno-oncologic agents are designed to regulate and boost immunity, are not target-specific, and may overcome tumor heterogeneity. With the successful establishment of predictive biomarkers, including Epstein-Barr virus pattern, microsatellite instability status, and programmed death-ligand 1 (PD-L1) expression, as well as ideal combination regimens, a new frontier in the immuno-oncology of GC treatment is on the horizon. Since the field of immuno-oncology has witnessed innovative, practice-changing successes in other cancer types, several trials on GC are ongoing. Among immuno-oncologic therapies, immune checkpoint inhibitors are the mainstay of clinical trials performed on GC. In this article, we review target-specific agents currently used in clinics or are undergoing clinical trials, and highlight the future clinical application of immuno-oncologic agents in inoperable GC.

Keywords

References

  1. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 2010;19:1893-1907. https://doi.org/10.1158/1055-9965.EPI-10-0437
  2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-E386.
  3. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer 2006;118:3030-3044. https://doi.org/10.1002/ijc.21731
  4. Oh CM, Won YJ, Jung KW, Kong HJ, Cho H, Lee JK, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2013. Cancer Res Treat 2016;48:436-450. https://doi.org/10.4143/crt.2016.089
  5. Mizrak Kaya D, Harada K, Shimodaira Y, Amlashi FG, Lin Q, Ajani JA. Advanced gastric adenocarcinoma: optimizing therapy options. Expert Rev Clin Pharmacol 2017;10:263-271.
  6. Sakuramoto S, Sasako M, Yamaguchi T, Kinoshita T, Fujii M, Nashimoto A, et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N Engl J Med 2007;357:1810-1820.
  7. Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet 2012;379:315-321.
  8. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010;376:687-697.
  9. Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 2014;15:1224-1235.
  10. Li J, Qin S, Xu J, Xiong J, Wu C, Bai Y, et al. Randomized, double-blind, placebo-controlled phase III trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction. J Clin Oncol 2016;34:1448-1454. https://doi.org/10.1200/JCO.2015.63.5995
  11. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature 2013;500:415-421. https://doi.org/10.1038/nature12477
  12. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015;21:449-456. https://doi.org/10.1038/nm.3850
  13. Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 2008;19:1523-1529. https://doi.org/10.1093/annonc/mdn169
  14. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127-137. https://doi.org/10.1038/35052073
  15. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000;19:3159-3167.
  16. Okines A, Cunningham D, Chau I. Targeting the human EGFR family in esophagogastric cancer. Nat Rev Clin Oncol 2011;8:492-503. https://doi.org/10.1038/nrclinonc.2011.45
  17. Burstein HJ. The distinctive nature of HER2-positive breast cancers. N Engl J Med 2005;353:1652-1654.
  18. Tan M, Yu D. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv Exp Med Biol 2007;608:119-129.
  19. Ruschoff J, Hanna W, Bilous M, Hofmann M, Osamura RY, Penault-Llorca F, et al. HER2 testing in gastric cancer: a practical approach. Mod Pathol 2012;25:637-650. https://doi.org/10.1038/modpathol.2011.198
  20. Holbro T, Hynes NE. ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 2004;44:195-217.
  21. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235:177-182. https://doi.org/10.1126/science.3798106
  22. Hynes NE, Stern DF. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta 1994;1198:165-184.
  23. Fujimoto-Ouchi K, Sekiguchi F, Yasuno H, Moriya Y, Mori K, Tanaka Y. Antitumor activity of trastuzumab in combination with chemotherapy in human gastric cancer xenograft models. Cancer Chemother Pharmacol 2007;59:795-805. https://doi.org/10.1007/s00280-006-0337-z
  24. Hofmann M, Stoss O, Shi D, Buttner R, Van De Vijver M, Kim W, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology 2008;52:797-805. https://doi.org/10.1111/j.1365-2559.2008.03028.x
  25. Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2002;2:127-137.
  26. Yamashita-Kashima Y, Iijima S, Yorozu K, Furugaki K, Kurasawa M, Ohta M, et al. Pertuzumab in combination with trastuzumab shows significantly enhanced antitumor activity in HER2-positive human gastric cancer xenograft models. Clin Cancer Res 2011;17:5060-5070. https://doi.org/10.1158/1078-0432.CCR-10-2927
  27. Swain SM, Kim SB, Cortes J, Ro J, Semiglazov V, Campone M, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 2013;14:461-471.
  28. Amir E, Ocana A, Seruga B, Freedman O, Clemons M. Lapatinib and HER2 status: results of a metaanalysis of randomized phase III trials in metastatic breast cancer. Cancer Treat Rev 2010;36:410-415. https://doi.org/10.1016/j.ctrv.2009.12.012
  29. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006;355:2733-2743. https://doi.org/10.1056/NEJMoa064320
  30. Hecht JR, Bang YJ, Qin SK, Chung HC, Xu JM, Park JO, et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC--a randomized phase III trial. J Clin Oncol 2016;34:443-451.
  31. Satoh T, Xu RH, Chung HC, Sun GP, Doi T, Xu JM, et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN-a randomized, phase III study. J Clin Oncol 2014;32:2039-2049. https://doi.org/10.1200/JCO.2013.53.6136
  32. Janjigian YY, Viola-Villegas N, Holland JP, Divilov V, Carlin SD, Gomes-DaGama EM, et al. Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and 89Zr-trastuzumab PET. J Nucl Med 2013;54:936-943. https://doi.org/10.2967/jnumed.112.110239
  33. Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat 2011;128:347-356. https://doi.org/10.1007/s10549-010-1090-x
  34. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012;367:1783-1791. https://doi.org/10.1056/NEJMoa1209124
  35. Barok M, Tanner M, Koninki K, Isola J. Trastuzumab-DM1 is highly effective in preclinical models of HER2-positive gastric cancer. Cancer Lett 2011;306:171-179. https://doi.org/10.1016/j.canlet.2011.03.002
  36. Kang YK, Shah MA, Ohtsu A, Van Cutsem E, Ajani JA, van der Horst T, et al. A randomized, openlabel, multicenter, adaptive phase 2/3 study of trastuzumab emtansine (T-DM1) versus a taxane (TAX) in patients (pts) with previously treated HER2-positive locally advanced or metastatic gastric/gastroesophageal junction adenocarcinoma (LA/MGC/GEJC). J Clin Oncol 2016;34 suppl:abstr 5.
  37. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer 2001;37 Suppl 4:S9-S15.
  38. Kim MA, Lee HS, Lee HE, Jeon YK, Yang HK, Kim WH. EGFR in gastric carcinomas: prognostic significance of protein overexpression and high gene copy number. Histopathology 2008;52:738-746.
  39. Pinto C, Di Fabio F, Siena S, Cascinu S, Rojas Llimpe F, Ceccarelli C, et al. Phase II study of cetuximab in combination with FOLFIRI in patients with untreated advanced gastric or gastroesophageal junction adenocarcinoma (FOLCETUX study). Ann Oncol 2007;18:510-517.
  40. Han SW, Oh DY, Im SA, Park SR, Lee KW, Song HS, et al. Phase II study and biomarker analysis of cetuximab combined with modified FOLFOX6 in advanced gastric cancer. Br J Cancer 2009;100:298. https://doi.org/10.1038/sj.bjc.6604861
  41. Lordick F, Luber B, Lorenzen S, Hegewisch-Becker S, Folprecht G, Woll E, et al. Cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric cancer: a phase II study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Br J Cancer 2010;102:500. https://doi.org/10.1038/sj.bjc.6605521
  42. Moehler M, Mueller A, Trarbach T, Lordick F, Seufferlein T, Kubicka S, et al. Cetuximab with irinotecan, folinic acid and 5-fluorouracil as first-line treatment in advanced gastroesophageal cancer: a prospective multi-center biomarker-oriented phase II study. Ann Oncol 2011;22:1358-1366. https://doi.org/10.1093/annonc/mdq591
  43. Kim C, Lee JL, Ryu MH, Chang HM, Kim TW, Lim HY, et al. A prospective phase II study of cetuximab in combination with XELOX (capecitabine and oxaliplatin) in patients with metastatic and/or recurrent advanced gastric cancer. Invest New Drugs 2011;29:366-373. https://doi.org/10.1007/s10637-009-9363-0
  44. Lordick F, Kang YK, Chung HC, Salman P, Oh SC, Bodoky G, et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol 2013;14:490-499. https://doi.org/10.1016/S1470-2045(13)70102-5
  45. Waddell T, Chau I, Cunningham D, Gonzalez D, Okines AF, Okines C, et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol 2013;14:481-489. https://doi.org/10.1016/S1470-2045(13)70096-2
  46. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer 2013;13:871. https://doi.org/10.1038/nrc3627
  47. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438:820.
  48. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669-676.
  49. Okines AF, Reynolds AR, Cunningham D. Targeting angiogenesis in esophagogastric adenocarcinoma. Oncologist 2011;16:844-858. https://doi.org/10.1634/theoncologist.2010-0387
  50. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006;7:359-371.
  51. Chen J, Zhou SJ, Zhang Y, Zhang GQ, Zha TZ, Feng YZ, et al. Clinicopathological and prognostic significance of galectin-1 and vascular endothelial growth factor expression in gastric cancer. World J Gastroenterol 2013;19:2073-2079. https://doi.org/10.3748/wjg.v19.i13.2073
  52. Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebocontrolled phase III study. J Clin Oncol 2011;29:3968-3976. https://doi.org/10.1200/JCO.2011.36.2236
  53. Shen L, Li J, Xu J, Pan H, Dai G, Qin S, et al. Bevacizumab plus capecitabine and cisplatin in Chinese patients with inoperable locally advanced or metastatic gastric or gastroesophageal junction cancer: randomized, double-blind, phase III study (AVATAR study). Gastric Cancer 2015;18:168-176. https://doi.org/10.1007/s10120-014-0351-5
  54. Youssoufian H, Hicklin DJ, Rowinsky EK. monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy. Clin Cancer Res 2007;13:5544s-5548s. https://doi.org/10.1158/1078-0432.CCR-07-1107
  55. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014;383:31-39. https://doi.org/10.1016/S0140-6736(13)61719-5
  56. Huynh H, Ong R, Zopf D. Antitumor activity of the multikinase inhibitor regorafenib in patient-derived xenograft models of gastric cancer. J Exp Clin Cancer Res 2015;34:132. https://doi.org/10.1186/s13046-015-0243-5
  57. Pavlakis N, Sjoquist KM, Martin AJ, Tsobanis E, Yip S, Kang YK, et al. Regorafenib for the treatment of advanced gastric cancer (INTEGRATE): a multinational placebo-controlled phase II trial. J Clin Oncol 2016;34:2728-2735.
  58. Carneiro F, Sobrinho-Simoes M. The prognostic significance of amplification and overexpression of c-met and c-erb B-2 in human gastric carcinomas. Cancer 2000;88:238-239. https://doi.org/10.1002/(SICI)1097-0142(20000101)88:1<238::AID-CNCR31>3.0.CO;2-F
  59. Janjigian YY, Tang LH, Coit DG, Kelsen DP, Francone TD, Weiser MR, et al. MET expression and amplification in patients with localized gastric cancer. Cancer Epidemiol Biomarkers Prev 2011;20:1021-1027. https://doi.org/10.1158/1055-9965.EPI-10-1080
  60. Iveson T, Donehower RC, Davidenko I, Tjulandin S, Deptala A, Harrison M, et al. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol 2014;15:1007-1018.
  61. Cunningham D, Tebbutt NC, Davidenko I, Murad AM, Al-Batran SE, Ilson DH, et al. Phase III, randomized, double-blind, multicenter, placebo (P)-controlled trial of rilotumumab (R) plus epirubicin, cisplatin and capecitabine (ECX) as first-line therapy in patients (pts) with advanced METpositive (pos) gastric or gastroesophageal junction (G/GEJ) cancer: RILOMET-1 study. J Clin Oncol 2015;33 suppl:abstr 4000.
  62. Doi T, Kang YK, Muro K, Jiang Y, Jain RK, Lizambri R. A phase 3, multicenter, randomized, double-blind, placebo-controlled study of rilotumumab in combination with cisplatin and capecitabine (CX) as first-line therapy for Asian patients (pts) with advanced MET-positive gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: the RILOMET-2 trial. J Clin Oncol 2015;33 suppl:abstr TPS226.
  63. Shah MA, Bang YJ, Lordick F, Tabernero J, Chen M, Hack SP, et al. METGastric: a phase III study of onartuzumab plus mFOLFOX6 in patients with metastatic HER2-negative (HER2-) and MET-positive (MET+) adenocarcinoma of the stomach or gastroesophageal junction (GEC). J Clin Oncol 2015;33 suppl:abstr 4012.
  64. Doi T, Muro K, Boku N, Yamada Y, Nishina T, Takiuchi H, et al. Multicenter phase II study of everolimus in patients with previously treated metastatic gastric cancer. J Clin Oncol 2010;28:1904-1910. https://doi.org/10.1200/JCO.2009.26.2923
  65. Ohtsu A, Ajani JA, Bai YX, Bang YJ, Chung HC, Pan HM, et al. Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J Clin Oncol 2013;31:3935-3943. https://doi.org/10.1200/JCO.2012.48.3552
  66. Bang YJ, Van Cutsem E, Mansoor W, Petty R, Chao Y, Cunningham D, et al. A randomized, open-label phase II study of AZD4547 (AZD) versus Paclitaxel (P) in previously treated patients with advanced gastric cancer (AGC) with Fibroblast Growth Factor Receptor 2 (FGFR2) polysomy or gene amplification (amp): SHINE study. J Clin Oncol 2015;33 suppl:abstr 4014.
  67. Helwick C, Goodman A. At ESMO 2016, Many Phase III Trials Fail to Meet Primary Endpoints. Huntington (NY): The ASCO Post; 2016.
  68. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol 2004;22:329-360.
  69. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell 2016;164:1233-1247. https://doi.org/10.1016/j.cell.2016.01.049
  70. Harris TJ, Drake CG. Primer on tumor immunology and cancer immunotherapy. J Immunother Cancer 2013;1:12. https://doi.org/10.1186/2051-1426-1-12
  71. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009;206:1717-1725. https://doi.org/10.1084/jem.20082492
  72. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014;515:568-571. https://doi.org/10.1038/nature13954
  73. Goode EF, Smyth EC. Immunotherapy for gastroesophageal cancer. J Clin Med 2016;5:84.
  74. Burstein HJ, Krilov L, Aragon-Ching JB, Baxter NN, Chiorean EG, Chow WA, et al. Clinical cancer advances 2017: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol 2017;35:1341-1367. https://doi.org/10.1200/JCO.2016.71.5292
  75. Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol 2016;17:717-726. https://doi.org/10.1016/S1470-2045(16)00175-3
  76. Kang YK, Satoh T, Ryu MH, Chao Y, Kato K, Chung HC, et al. Nivolumab (ONO-4538/BMS-936558) as salvage treatment after second or later-line chemotherapy for advanced gastric or gastro-esophageal junction cancer (AGC): a double-blinded, randomized, phase III trial. J Clin Oncol 2017;35 suppl:abstr 2.
  77. Arzimanoglou II, Gilbert F, Barber HR. Microsatellite instability in human solid tumors. Cancer 1998;82:1808-1820. https://doi.org/10.1002/(SICI)1097-0142(19980515)82:10<1808::AID-CNCR2>3.0.CO;2-J
  78. Colli LM, Machiela MJ, Myers TA, Jessop L, Yu K, Chanock SJ. Burden of nonsynonymous mutations among TCGA cancers and candidate immune checkpoint inhibitor responses. Cancer Res 2016;76:3767-3772.
  79. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443-2454.
  80. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-2520. https://doi.org/10.1056/NEJMoa1500596
  81. Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016;27:1386-1422. https://doi.org/10.1093/annonc/mdw235
  82. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513:202-209. https://doi.org/10.1038/nature13480
  83. ClinicalTrials.gov (US). An investigational immuno-therapy study of nivolumab, and nivolumab in combination with other anti-cancer drugs, in colon cancer that has come back or has spread (CheckMate142) [Internet]. Bethesda (MD): National Library of Medicine; 2014 [cited 2016 Jul 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT02060188.
  84. Ribas A, Robert C, Hodi FS, Wolchok JD, Joshua AM, Hwu WJ, et al. Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferoninflammatory immune gene signature. J Clin Oncol 2015;33 suppl:abstr 3001.
  85. Shankaran V, Muro K, Bang YJ, Geva R, Catenacci DV, Gupta S, et al. Correlation of gene expression signatures and clinical outcomes in patients with advanced gastric cancer treated with pembrolizumab (MK-3475). J Clin Oncol 2015;33 suppl:abstr 3026.
  86. Murphy G, Pfeiffer R, Camargo MC, Rabkin CS. Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology 2009;137:824-833. https://doi.org/10.1053/j.gastro.2009.05.001
  87. Bae JM, Kim EH. Epstein-Barr Virus and gastric cancer risk: a meta-analysis with meta-regression of casecontrol studies. J Prev Med Public Health 2016;49:97. https://doi.org/10.3961/jpmph.15.068
  88. Derks S, Liao X, Chiaravalli AM, Xu X, Camargo MC, Solcia E, et al. Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers. Oncotarget 2016;7:32925.
  89. Kawazoe A, Kuwata T, Kuboki Y, Shitara K, Nagatsuma AK, Aizawa M, et al. Clinicopathological features of programmed death ligand 1 expression with tumor-infiltrating lymphocyte, mismatch repair, and Epstein-Barr virus status in a large cohort of gastric cancer patients. Gastric Cancer 2017;20:407-415. https://doi.org/10.1007/s10120-016-0631-3
  90. Derks S, Liao X, Xu X, Camargo MC, Chiaravalli AM, Solcia E, et al. PD-L1 expression in Epstein-Barr virus-infected gastric cancers. J Clin Oncol 2016;34 suppl:abstr 4052.
  91. Kang BW, Seo AN, Yoon S, Bae HI, Jeon SW, Kwon OK, et al. Prognostic value of tumor-infiltrating lymphocytes in Epstein-Barr virus-associated gastric cancer. Ann Oncol 2016;27:494-501. https://doi.org/10.1093/annonc/mdv610
  92. Forman D, Burley V. Gastric cancer: global pattern of the disease and an overview of environmental risk factors. Best Pract Res Clin Gastroenterol 2006;20:633-649. https://doi.org/10.1016/j.bpg.2006.04.008
  93. Niwa T, Tsukamoto T, Toyoda T, Mori A, Tanaka H, Maekita T, et al. Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res 2010;70:1430-1440. https://doi.org/10.1158/0008-5472.CAN-09-2755
  94. Anderson KM, Czinn SJ, Redline RW, Blanchard TG. Induction of CTLA-4-mediated anergy contributes to persistent colonization in the murine model of gastric Helicobacter pylori infection. J Immunol 2006;176:5306-5313. https://doi.org/10.4049/jimmunol.176.9.5306
  95. Stromberg E, Lundgren A, Edebo A, Lundin S, Svennerholm AM, Lindholm C. Increased frequency of activated T-cells in the Helicobacter pylori-infected antrum and duodenum. FEMS Immunol Med Microbiol 2003;36:159-168. https://doi.org/10.1016/S0928-8244(03)00026-9
  96. Das S, Suarez G, Beswick EJ, Sierra JC, Graham DY, Reyes VE. Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection. J Immunol 2006;176:3000-3009. https://doi.org/10.4049/jimmunol.176.5.3000
  97. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 2013;14:1212-1218. https://doi.org/10.1038/ni.2762
  98. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A 2010;107:4275-4280. https://doi.org/10.1073/pnas.0915174107
  99. Selby M, Engelhardt J, Lu LS, Quigley M, Wang C, Chen B, et al. Antitumor activity of concurrent blockade of immune checkpoint molecules CTLA-4 and PD-1 in preclinical models. J Clin Oncol 2013;31 suppl:abstr 3061.
  100. Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H, et al. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol 2015;194:950-959. https://doi.org/10.4049/jimmunol.1401686
  101. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013;369:122-133. https://doi.org/10.1056/NEJMoa1302369
  102. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 2015;372:2006-2017. https://doi.org/10.1056/NEJMoa1414428
  103. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Updated results from a phase III trial of nivolumab (NIVO) combined with ipilimumab (IPI) in treatment-naive patients (pts) with advanced melanoma (MEL)(CheckMate 067). J Clin Oncol 2016;34 suppl:abstr 9505.
  104. Atkins MB, Gupta S, Choueiri TK, McDermott DF, Puzanov I, Tarazi J, et al. Phase Ib dose-finding study of axitinib plus pembrolizumab in treatment-naive patients with advanced renal cell carcinoma. J Immunother Cancer 2015;3:P353.
  105. Bendell JC, Kim TW, Goh BC, Wallin J, Oh DY, Han SW, et al. Clinical activity and safety of cobimetinib (cobi) and atezolizumab in colorectal cancer (CRC). J Clin Oncol 2016;34 suppl:abstr 3502.
  106. Lee J, Ou SH. Towards the goal of personalized medicine in gastric cancer-time to move beyond HER2 inhibition. Part I: targeting receptor tyrosine kinase gene amplification. Discov Med 2013;15:333-341.
  107. Lee J, Ou SH. Towards the goal of personalized medicine in gastric cancer-time to move beyond HER2 inhibition. Part II: targeting gene mutations and gene amplifications and the angiogenesis pathway. Discov Med 2013;16:7-14.
  108. Catenacci DV, Ang A, Liao WL, Shen J, O'Day E, Loberg RD, et al. MET tyrosine kinase receptor expression and amplification as prognostic biomarkers of survival in gastroesophageal adenocarcinoma. Cancer 2017;123:1061-1070. https://doi.org/10.1002/cncr.30437
  109. Kim KC, Koh YW, Chang HM, Kim TH, Yook JH, Kim BS, et al. Evaluation of HER2 protein expression in gastric carcinomas: comparative analysis of 1414 cases of whole-tissue sections and 595 cases of tissue microarrays. Ann Surg Oncol 2011;18:2833-2840. https://doi.org/10.1245/s10434-011-1695-2
  110. Mittendorf EA, Wu Y, Scaltriti M, Meric-Bernstam F, Hunt KK, Dawood S, et al. Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin Cancer Res 2009;15:7381-7388. https://doi.org/10.1158/1078-0432.CCR-09-1735
  111. Stahl P, Seeschaaf C, Lebok P, Kutup A, Bockhorn M, Izbicki JR, et al. Heterogeneity of amplification of HER2, EGFR, CCND1 and MYC in gastric cancer. BMC Gastroenterol 2015;15:7. https://doi.org/10.1186/s12876-015-0231-4
  112. Yamamoto H, Watanabe Y, Maehata T, Morita R, Yoshida Y, Oikawa R, et al. An updated review of gastric cancer in the next-generation sequencing era: insights from bench to bedside and vice versa. World J Gastroenterol 2014;20:3927-3937.
  113. Karabacak NM, Zheng Y, Emmons E, Koulopoulos M, Haber DA, Toner M, et al. Single cell signaling analysis reveals circulating tumor cell markers of drug susceptibility and tumor heterogeneity. 2017 AACR Annual Meeting; 2017 Apr 1-5; Washington, D.C. Philadelphia (PA): American Association for Cancer Research; 2017. p. 4953.

Cited by

  1. Novel prognostic biomarkers of gastric cancer based on gene expression microarray: COL12A1, GSTA3, FGA and FGG vol.18, pp.4, 2018, https://doi.org/10.3892/mmr.2018.9368
  2. Disappearance of bone metastases in chemotherapy-resistant gastric cancer treated with antigen peptide-pulsed dendritic cell-activated cytotoxic T lymphocyte immunotherapy: A case report vol.16, pp.1, 2018, https://doi.org/10.3892/ol.2018.8781
  3. The combination of apatinib and S-1 for the treatment of advanced gastric cancer in China : A meta-analysis of randomized controlled trials vol.97, pp.47, 2018, https://doi.org/10.1097/md.0000000000013259
  4. Never-in-mitosis A-related kinase 8, a novel target of von-Hippel-Lindau tumor suppressor protein, promotes gastric cancer cell proliferation vol.16, pp.5, 2018, https://doi.org/10.3892/ol.2018.9328
  5. Zinc Finger Protein 521, Negatively Regulated by MicroRNA-204-5p, Promotes Proliferation, Motility and Invasion of Gastric Cancer Cells vol.18, pp.None, 2018, https://doi.org/10.1177/1533033819874783
  6. Polymorphisms in RAS/RAF/MEK/ERK Pathway Are Associated with Gastric Cancer vol.10, pp.1, 2018, https://doi.org/10.3390/genes10010020
  7. Clinical Implementation of Precision Medicine in Gastric Cancer vol.19, pp.3, 2018, https://doi.org/10.5230/jgc.2019.19.e25
  8. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer vol.10, pp.12, 2019, https://doi.org/10.1038/s41419-019-2131-y
  9. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak vol.12, pp.9, 2020, https://doi.org/10.3390/v12091058
  10. Identification and validation of stromal-tumor microenvironment-based subtypes tightly associated with PD-1/PD-L1 immunotherapy and outcomes in patients with gastric cancer vol.20, pp.None, 2020, https://doi.org/10.1186/s12935-020-01173-3
  11. Estrogen-related receptor-gamma influences Helicobacter pylori infection by regulating TFF1 in gastric cancer vol.563, pp.None, 2018, https://doi.org/10.1016/j.bbrc.2021.05.076