• Title/Summary/Keyword: Immune activation

Search Result 947, Processing Time 0.028 seconds

Anti-inflammatory Effects of Resveratrol, (-)-Epigallocatechin-3-gallate and Curcumin by the Modulation of Toll-like Receptor Signaling Pathways (Toll-like receptors 신호전달체계 조절을 통한 resveratrol, (-)-epigallocatechin-3-gallate, curcumin의 항염증 효과)

  • Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.481-487
    • /
    • 2007
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defenses against invading microbial pathogens, thus leading to the activation of adaptive immune responses. In general, TLRs have two major downstream signaling pathways: the MyD88- and TRIF-dependent pathways, which lead to the activation of $NF-{\kappa}B$ and IRF3. Numerous studies have demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit $NF-{\kappa}B$ activation induced by pro-inflammatory stimuli, including lipopolysaccharides and $TNF{\alpha}$. However, the direct molecular targets for such anti-inflammatory phytochemicals have not been fully identified. Identifying the direct targets of phytochemicals within the TLR pathways is important because the activation of TLRs by pro-inflammatory stimuli can induce inflammatory responses that are the key etiological conditions in the development of many chronic inflammatory diseases. In this paper we discuss the molecular targets of resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin in the TLR signaling pathways. Resveratrol specifically inhibited the TRIF pathway in TLR3 and TLR4 signaling, by targetting TBK1 and RIP1 in the TRIF complex. Furthermore, EGCG suppressed the activation of IRF3 by targetting TBK1 in the TRIF-dependent signaling pathways. In contrast, the molecular target of curcumin within the TLR signaling pathways is the receptor itself, in addition to $IKK{\beta}$. Together, certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression, and in turn, alter susceptibility to microbial infection and chronic inflammatory diseases.

Postbiotics Enhance NK Cell Activation in Stress-Induced Mice through Gut Microbiome Regulation

  • Jung, Ye-Jin;Kim, Hyun-Seok;Jaygal, Gunn;Cho, Hye-Rin;Lee, Kyung bae;Song, In-bong;Kim, Jong-Hoon;Kwak, Mi-Sun;Han, Kyung-Ho;Bae, Min-Jung;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.612-620
    • /
    • 2022
  • Recent studies have revealed that probiotics and their metabolites are present under various conditions; however, the role of probiotic metabolites (i.e., postbiotics in pathological states) is controversial. Natural killer (NK) cells play a key role in innate and adaptive immunity. In this study, we examined NK cell activation influenced by a postbiotics mixture in response to gut microbiome modulation in stress-induced mice. In vivo activation of NK cells increased in the postbiotics mixture treatment group in accordance with Th1/Th2 expression level. Meanwhile, the Red Ginseng treatment group, a reference group, showed very little expression of NK cell activation. Moreover, the postbiotics mixture treatment group in particular changed the gut microbiome composition. Although the exact role of the postbiotics mixture in regulating the immune system of stress-induced mice remains unclear, the postbiotics mixture-induced NK cell activation might have affected gut microbiome modulation.

Immune-triggering effect of the foodborne parasite Kudoa septempunctata through the C-type lectin Mincle in HT29 cells

  • Shin, Ji-Hun;Yang, Jung-Pyo;Seo, Seung-Hwan;Kim, Sang-Gyun;Kim, Eun-Min;Ham, Do-Won;Shin, Eun-Hee
    • BMB Reports
    • /
    • v.53 no.9
    • /
    • pp.478-483
    • /
    • 2020
  • Kudoa septempunctata is a myxozoan parasite that causes food poisoning in individuals consuming olive flounder. The present study aimed to investigate the currently insufficiently elucidated early molecular mechanisms of inflammatory responses in the intestine owing to parasite ingestion. After Kudoa spores were isolated from olive flounder, HT29 cells were exposed to spores identified to be alive using SYTO-9 and propidium iodide staining or to antigens of Kudoa spores (KsAg). IL-1β, IL-8, TNF-α and NFKB1 expression and NF-κB activation were assessed using real-time PCR, cytokine array and western blotting. The immunofluorescence of FITC-conjugated lectins, results of ligand binding assays using Mincle-Fc and IgG-Fc, CLEC4E expressions in response to KsAg stimulation, and Mincle-dependent NF-κB activation were assessed to clarify the early immune-triggering mechanism. Inflammatory cytokines (IL-1β, GM-CSF and TNF-α), chemokines (IL-8, CCL2, CCL5 and CXCL1) and NF-κB activation (pNF-κB/NF-κB) in HT29 cells increased following stimulation by KsAg. The immunofluorescence results of spores and lectins (concanavalin A and wheat germ agglutinin) suggested the importance of Mincle in molecular recognition between Kudoa spores and intestinal cells. Practically, data for Mincle-Fc and KsAg binding affinity, CLEC4E mRNA expression, Mincle immunofluorescence staining and hMincle-dependent NF-κB activation demonstrated the involvement of Mincle in the early immune-triggering mechanism. The present study newly elucidated that the molecular recognition and immune-triggering mechanism of K. septempunctata are associated with Mincle on human intestinal epithelial cells.

IL-12 Production and Subsequent Natural Killer Cell Activation by Necrotic Tumor Cell-loaded Dendritic Cells in Therapeutic Vaccinations

  • Kim, Aeyung;Kim, Kwang Dong;Choi, Seung-Chul;Jeong, Moon-Jin;Lee, Hee Gu;Choe, Yong-Kyung;Paik, Sang-Gi;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.188-200
    • /
    • 2003
  • Background: Immunization of dendritic cells (DCs) pulsed with tumor antigen can activate tumor-specific cytotoxic T lymphocytes (CTL) that are responsible for protection and regression. In this study, we examined whether the uptake of necrotic tumor cells could modulate DC phenotypes and whether the immunization of necrotic tumor cell-loaded DCs could elicit efficient tumor specific immune responses followed by a regression of established tumor burdens. Methods: We prepared necrotic tumor cell-pulsed DCs for the therapeutic vaccination and investigated their phenotypic characteristics, the immune responses induced by these DCs, and therapeutic vaccine efficacy against colon carcinoma in vivo. Several parameters including phagocytosis of tumor cells, surface antigen expression, chemokine receptor expression, IL-12 production, and NK as well as CTL activation were assessed to characterize the immune response. Results: DCs derived from mouse bone marrow efficiently phagocytosed necrotic tumor cells and after the uptake, they produced remarkably increased levels of IL-12. A decreased CCR1 and increased CCR7 expression on DCs was also observed after the tumor uptake, suggesting that antigen uptake could induce DC maturation. Furthermore, co-culturing of DCs with NK cells in vitro enhanced IL-12 production in DCs and IFN-${\gamma}$ production in NK cells, which was significantly dependent on IL-12 production and cell-to-cell contact. Immunization of necrotic tumor cell-loaded DCs induced cytotoxic T lymphocytes as well as NK activation, and protected mice against subsequent tumor challenge. In addition, intratumoral or contra-lateral immunization of these DCs not only inhibited the growth of established tumors, but also eradicated tumors in more than 60% of tumor-bearing mice. Conclusion: Our data indicate that production of IL-12, chemokine receptor expression and NK as well as CTL activation may serve as major parameters in assessing the effect of tumor cell-pulsed DC vaccine. Therefore, DCs loaded with necrotic tumor cells offer a rational strategy to treat tumors and eventually lead to prolonged survival.

Signaling for Synergistic Activation of Natural Killer Cells

  • Kwon, Hyung-Joon;Kim, Hun Sik
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.240-246
    • /
    • 2012
  • Natural killer (NK) cells play a pivotal role in early surveillance against virus infection and cellular transformation, and are also implicated in the control of inflammatory response through their effector functions of direct lysis of target cells and cytokine secretion. NK cell activation toward target cell is determined by the net balance of signals transmitted from diverse activating and inhibitory receptors. A distinct feature of NK cell activation is that stimulation of resting NK cells with single activating receptor on its own cannot mount natural cytotoxicity. Instead, specific pairs of co-activation receptors are required to unleash NK cell activation via synergy- dependent mechanism. Because each co-activation receptor uses distinct signaling modules, NK cell synergy relies on the integration of such disparate signals. This explains why the study of the mechanism underlying NK cell synergy is important and necessary. Recent studies revealed that NK cell synergy depends on the integration of complementary signals converged at a critical checkpoint element but not on simple amplification of the individual signaling to overcome intrinsic activation threshold. This review focuses on the signaling events during NK cells activation and recent advances in the study of NK cell synergy.

The Effect of Mesenchymal Stem Cells on the Activation of Dendritic Cells in the Cell Culture Insert System (세포배양삽입체계(Cell Culture Insert System)에서 중간엽 줄기세포(Mesenchymal Stem Cell)가 수지상세포(Dendritic Cell)의 활성화에 미치는 영향)

  • Kim, Kee Won;Park, Suk Young;Lee, Kyung Bock;Kim, Hyun-su
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.88-93
    • /
    • 2004
  • Background: Bone marrow mesenchymal stem cells (MSC) inhibit the immune response of lymphocytes to specific antigens and dendritic cells (DC) are professional antigenpresenting cells whose function is to present antigen to naive T-lymphocytes with high efficiency and play a central role in the regulation of immune response. We studied the effects of MSC on DC to evaluate the relationship between MSC and DC in transplantation immunology. Methods: MSC were expanded from the bone marrow and DC were cultured from peripheral blood mononuclear cells (PBMNC) of 6 myelogenous leukemia after achieving complete response. Responder cells isolated from PBMNC and lysates of autologous leukemic cells are used as tumor antigen. The effect of MSC on the DC was analyzed by immunophenotype properties of DC and by proliferative capacity and the amount of cytokine production with activated PBMNC against the allogeneic lymphocytes. Also, cytotoxicity tests against leukemic cells studied to evaluate the immunologic effect of MSC on the DC. Results: MSC inhibit the CD83 and HLA-class II molecules of antigen-loaded DC. The proliferative capacity and the amount of INF-$\gamma$ production of lymphocytes to allogeneic lymphocytes were decreased in DC co-cultured with MSC. Also the cytotoxic activity of lymphocytes against leukemic cells was decreased in DC co-cultured with MSC. Conclusion: MSC inhibit the activation and immune response of DC induced by allogeneic or tumor antigen.

Inhibitory Effect of Rubus Coreanus on Compound 48/80- or Anti-DNP IgE-Induced Mast Cell Activation (Compound 48/80과 anti-DNP IgE로 유도되는 비만세포 활성화에 대한 복분자의 억제효과)

  • Li, Guang Zhao;Chai, Ok Hee;Song, Chang Ho
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.100-107
    • /
    • 2004
  • Background: The fruit of Rubus coreanus (RC), a perennial herb, has been cultivated for a long time as a popular vegetable. The anti-allergy mechanism of RC is unknown. The purpose of this study is to investigate the inhibitory effect of RC on compound 48/80- or anti-DNP IgE-induced mast cell activation. Methods: For this, influences of RC on the compound 48/80-induced degranulation, histamine release, calcium influx and the change of the intracellular cAMP (cyclic adenosine-3',5' monophosphate) levels of rat peritoneal mast cells (RPMC) and on the anti-DNP IgE-induced histamine release of RPMC were observed. Results: The pretreatment of RC inhibited compound 48/80-induced degranulation, histamine release and intracelluar calcium uptake of RPMC. The anti-DNP IgE-induced histamine release of RPMC was significantly inhibited by pretreatment of RC. The RC increased the level of intracellular cAMP of RPMC, and the pretreatment of RC inhibited compound 48/80-induced decrement of intracellular cAMP of RPMC. Conclusion: These results suggest that RC contains some substances with an activity to inhibit the compound 48/80- or anti-DNP IgE-induced mast cell activitation. The inhibitory effects of RC are likely due to the stabilization of mast cells by blocking the calcium uptake and enhancing the level of intracellular cAMP.

Kinetic Analysis of CpG-Induced Mouse B Cell Growth and Ig Production

  • Kim, Young-Ha;Lee, Sang-Hoon;Yoo, Yung-Choon;Lee, Jung-Lim;Park, Jong-Hwan;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.89-95
    • /
    • 2012
  • Immune cells express toll-like receptors (TLRs) and respond to molecular patterns of various pathogens. CpG motif in bacterial DNA activates innate and acquired immune systems through binding to TLR9 of immune cells. Several studies reported that CpG can directly regulate B cell activation, differentiation, and Ig production. However, the role of CpG in B cell growth and Ig production is not fully understood. In this study, we analyzed the effect of CpG on the kinetics of mouse B cell viability, proliferation, and Igs production. Overall, CpG enhanced mouse B cell growth and production of Igs in a dose-dependent manner. Unlike LPS, 100 nM CpG (high dose) did not support TGF-${\beta}1$-induced IgA and IgG2b production. Moreover, 100 nM CpG treatment abrogated either LPS-induced IgM or LPS/TGF-${\beta}1$-induced IgA and IgG2b production, although B cell growth was enhanced by CpG under the same culture conditions. We subsequently found that 10 nM CpG (low dose) is sufficient for B cell growth. Again, 10 nM CpG did not support TGF-${\beta}1$-induced IgA production but, interestingly enough, supported RA-induced IgA production. Further, 10 nM CpG, unlike 100 nM, neither abrogated the LPS/TGF-${\beta}1$- nor the LPS/RA-induced IgA production. Taken together, these results suggest that dose of CpG is critical in B cell growth and Igs production and the optimal dose of CpG cooperates with LPS in B cell activation and differentiation toward Igs production.

A Study on the Immune activaty of Phellinus Linteus Extracts (상황(桑黃)버섯의 면역증진(免疫增進)에 관(關)한 연구(硏究))

  • Lim, Eui-Su;Choi, Byung-Ryul;Yoo, Hwa-Seung;Lee, Yong-Yeon;Seo, Sang-Hoon;Cho, Jung-Hyo;Lee, Yeon-Weol;Son, Chang-Kyu;Cho, Chong-Kwan;Lee, Yong-Gu;Song, Kee-Cheol
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.8 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • Objectives This experimental study was carried out to evaluate the effects of Phellinus Linteus on immune activation. Methods In order to investigate the effect of Phellinus Linteus, the following was performed: The fraction of $CD4^+$, $CD8^+$, $CD19^+$ in splenic cell, gene expression of IL-12 (p35), IL-12 (p40) , $IFN-{\gamma}$, and splenic cell proliferation by PL-E. Results PL-E helped $CD4^+$, $CD8^+$, $CD19^+$ expression more effectively compared with control group. PL-E helped IL-12 (p35), IL-12 (p40), $IFN-{\gamma}$ gene expression in splenic cells more effectively compared with control group. PL-E proliferated splenic cells more effectively compared with control group. Conclusions: It is suggested that PL-E is able to activate immune response system.

  • PDF

Enhancement of Immune Activities of Natural Water-Soluble Sulforaphane by Nano Encapsulation Process (천연 수용성 설포라판의 나노입자화를 통한 면역 활성 증진)

  • Ha, Ji-Hye;Han, Jae-Gun;Jeong, Hyang-Suk;Oh, Sung-Ho;Kwon, Min-Chul;Choi, Young-Beom;Ko, Jung-Rim;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.6
    • /
    • pp.402-408
    • /
    • 2008
  • This study was performed to investigate improving immune activities of natural water-soluble sulforaphane extracted from Brassica oleracea var. italica by nano encapsulation process. The nanoparticles of the sulforaphane extracted with ultrasonification process at $60^{\circ}C$ promoted human B and T cell growth, about $7{\sim}35%$ compared to the control. The secretion of IL-6 and TNF-${\alpha}$ from T cells were also enhanced as $2.6{\times}10^{-4}pg/cell$ and $2.1{\times}10^{-4} pg/cell$, respectively, by the adding nano samples. NK cell activation was improved about 8%, compare to the control in adding cultured medium of T cell added nano samples. It was also found that sulforaphane extracted from B. oleracea var. italica had highly inhibitory activity on hyaluronidase as $IC_{50}$ about $200\;{\mu}g/m{\ell}$. It can be concluded that natural water-soluble sulforaphane samples by nano-encapsulation, each size is 200 nm, extracted from B. oleracea var. italica has high immune activities through higher efficiency of bio-activation than conventional extracts.