• 제목/요약/키워드: Immune Modulation

검색결과 298건 처리시간 0.026초

Alteration of Gut Microbiota in Autism Spectrum Disorder: An Overview

  • Oh, Donghun;Cheon, Keun-Ah
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제31권3호
    • /
    • pp.131-145
    • /
    • 2020
  • The microbiota-gut-brain axis, which refers to the bidirectional communication pathway between gut bacteria and the central nervous system, has a profound effect on important brain processes, from the synthesis of neurotransmitters to the modulation of complex behaviors such as sociability and anxiety. Previous studies have revealed that the gut microbiota is potentially related to not only gastrointestinal disturbances, but also social impairment and repetitive behavior-core symptoms of autism spectrum disorder (ASD). Although studies have been conducted to characterize the microbial composition in patients with ASD, the results are heterogeneous. Nevertheless, it is clear that there is a difference in the composition of the gut microbiota between ASD and typically developed individuals, and animal studies have repeatedly suggested that the gut microbiota plays an important role in ASD pathophysiology. This possibility is supported by abnormalities in metabolites produced by the gut microbiota and the association between altered immune responses and the gut microbiota observed in ASD patients. Based on these findings, various attempts have been made to use the microbiota in ASD treatment. The results reported to date suggest that microbiota-based therapies may be effective for ASD, but largescale, well-designed studies are needed to confirm this.

Immune Modulation of B. terrestris Worker (a Type of Bumblebee), Extract on CFA-induced Paw Edema in Rats

  • Ahn, Mi Young;Kim, Soon Ja;Han, Jea Woong;Yoon, Hyung Joo;Hwang, Jae Sam;Yun, Eun Young
    • Toxicological Research
    • /
    • 제30권4호
    • /
    • pp.277-282
    • /
    • 2014
  • To develop a composition for enhancing immunity, based on alcohol extracts of the bumblebee as an active ingredient, bumblebee ethanol extracts were evaluated for their protective effect in chronic models of inflammation, adjuvant induced rat arthritis. B. terrestris worker extract (SDIEX) and, B. hypocrita sapporoensis lava and pupa extract (SPDYBEX), significantly decreased paw edema in arthritic rats, at a dose 100 mg/kg, respectively. The cytokine levels related inflammation of COX-2, $sPLA_2$, VEGF, and TNF-${\alpha}$, were decreased, compared to positive control, indomethacin (5 mg/kg). Histopathological data demonstrated decreases inflammatory activity, hind paw edema, and repaired hyaline articular cartilage in DRG over a 2 wk administration. HPLC and GC-MS analysis of SDIEX and SPDYBEX revealed the presence of cantharidin.

Differential expression of the 27 kDa cathepsin L-like cysteine protease in developmental stages of Spirometra erinacei

  • Kong, Yoon;Yun, Doo-Hee;Cho, Seung-Yull;Sohn, Woon-Mok;Chung, Young-Bae;Kang, Shin-Yong
    • Parasites, Hosts and Diseases
    • /
    • 제38권3호
    • /
    • pp.195-199
    • /
    • 2000
  • The 27 kDa cathepsin L-like cysteine protease of Spirometra erinocei plerocercoid is known to play an important function in tissue penetration, nutrient uptake and immune modulation in human sparganosis. In the present study, the expression of this enzyme was examined at different developmental stages of S. erinacei including immature egg, coracidium, plerocercoid in tadpole and rat, and adult Proteolytic activity against carboxybenzoyl-phenylalanyl-arginyl-7-amino-4-rnethylcournarin was do tooted in the extracts of coracidia and plerocercoid while no activity was observed in those of immature egg and adult. The specific activity in coraridial extracts was lower than that in the plerocercoid. Reverse transcription-polymerase chain reaction and Northern biol analysis demonstrated that the gene was expressed in the coracidium and plerocercoid but not in immature egg and adult. These results suggest that the 27 kDa cysteine protease is only expressed in the stages involving active migration of the parasite in the host tissue.

  • PDF

Development of transgenic rice lines expressing the human lactoferrin gene

  • Lee, Jin-Hyoung;Kim, Il-Gi;Kim, Hyo-Sung;Shin, Kong-Sik;Suh, Seok-Cheol;Kweon, Soon-Jong;Rhim, Seong-Lyul
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.556-561
    • /
    • 2010
  • Lactoferrin is an 80-kDa iron-binding glycoprotein that is found in high concentrations in human milk. Human lactoferrin (hLF) has several beneficial biological activities including immune system modulation and antimicrobial activity. In the present study, we devolved a method of hLF expression through introducing the hLF gene construct into Oriza sativa cv. Nakdong using the Agrobacterium-mediated transformation system. The expression of the hLF gene under the control of the rice glutelin promoter was detected in the seeds of transgenic rice plants. Transformed rice plants were selected on media containing herbicide(DL-phosphinothricin) and the integration of hLF cDNA was confirmed by Southern blot analysis. The expression of the full length hLF protein from the grains of transgenic rice plants was verified by Western blot analysis. The lactoferrin expression levels in the transformed rice grains determined by enzyme-linked immunosorbant assay accounted for approximately 1.5% of total soluble protein. Taken together, these data indicate that rice grains expressing hLF can be directly incorporated into infant formula and baby food.

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • 제38권1호
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.

Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review

  • Neeraja, Recharla;Sungkwon, Park;Minji, Kim;Byeonghyeon, Kim;Jin Young, Jeong
    • Journal of Animal Science and Technology
    • /
    • 제64권4호
    • /
    • pp.640-653
    • /
    • 2022
  • Deoxynivalenol (DON) is the most common mycotoxin contaminant of cereal-based food and animal feed. The toxicity of DON is very low compared to that of other toxins; however, the most prominent signs of DON exposure include inappetence and body weight loss, which causes considerable economic losses in the livestock industry. This review summarizes critical studies on biological DON mycotoxin mitigation strategies and the respective in vitro and in vivo intestinal effects. Focus areas include growth performance, gut health in terms of intestinal histomorphology, epithelial barrier functions, the intestinal immune system and microflora, and short-chain fatty acid production in the intestines. In addition, DON detoxification and modulation of these parameters, through biological supplements, are discussed. Biological detoxification of DON using microorganisms can attenuate DON toxicity by modulating gut microbiota and improving gut health with or without influencing the growth performance of pigs. However, the use of microorganisms as feed additives to livestock for mycotoxins detoxification needs more research before commercial use.

Complete genome sequence of Limosilactobacillus fermentum JNU532 as a probiotic candidate for the functional food and feed supplements

  • Bogun Kim;Ziayo Meng;Xiaoyue Xu;Seungwoo Baek;Duleepa Pathiraja;In-Geol Choi;Sejong Oh
    • Journal of Animal Science and Technology
    • /
    • 제65권1호
    • /
    • pp.271-274
    • /
    • 2023
  • Lactic acid bacteria (LAB) have been reported to possess various beneficial properties and are commonly used as probiotics. LAB play a crucial role in milk fermentation, industrial lactic acid fermentation, and health and medicine. Limosilactobacillus fermentum isolated from fermented dairy and food products is considered as 'Generally Recognized as Safe' by FDA. Limosilactobacillus fermentum plays an important role in modulation of the intestinal microbiota, enhancing the host immune system and improving feed digestibility. We isolated a probiotic candidate that was identified and named Limosilactobacillus fermentum JNU532. In a previous report, cell-free culture of L. fermentum JNU532 exhibited anti-melanogenic and antioxidant activities. In this study, we present the complete genome assembly of the bacterial strain JNU532. The final genome consists of one circular chromosome (2,077,416 base pairs) with a guanine + cytosine (GC) ratio of 51.5%.

Modulation of DNA methylation by one-carbon metabolism: a milestone for healthy aging

  • Sang-Woon Choi ;Simonetta Friso
    • Nutrition Research and Practice
    • /
    • 제17권4호
    • /
    • pp.597-615
    • /
    • 2023
  • Healthy aging can be defined as an extended lifespan and health span. Nutrition has been regarded as an important factor in healthy aging, because nutrients, bioactive food components, and diets have demonstrated beneficial effects on aging hallmarks such as oxidative stress, mitochondrial function, apoptosis and autophagy, genomic stability, and immune function. Nutrition also plays a role in epigenetic regulation of gene expression, and DNA methylation is the most extensively investigated epigenetic phenomenon in aging. Interestingly, age-associated DNA methylation can be modulated by one-carbon metabolism or inhibition of DNA methyltransferases. One-carbon metabolism ultimately controls the balance between the universal methyl donor S-adenosylmethionine and the methyltransferase inhibitor S-adenosylhomocysteine. Water-soluble B-vitamins such as folate, vitamin B6, and vitamin B12 serve as coenzymes for multiple steps in one-carbon metabolism, whereas methionine, choline, betaine, and serine act as methyl donors. Thus, these one-carbon nutrients can modify age-associated DNA methylation and subsequently alter the age-associated physiologic and pathologic processes. We cannot elude aging per se but we may at least change age-associated DNA methylation, which could mitigate age-associated diseases and disorders.

STAT3 and SHP-1: Toward Effective Management of Gastric Cancer

  • Moon Kyung Joo
    • Journal of Digestive Cancer Research
    • /
    • 제6권1호
    • /
    • pp.6-10
    • /
    • 2018
  • The importance of signal transducer and activator of transcription 3 (STAT3) signaling in gastric carcinogenesis was firmly evaluated in the previous studies. Fully activated STAT3 induces various target genes involving tumor invasion and epithelial-mesenchymal transition (EMT), and mediates interaction between cancer cells and microenvironmental immune cells. Thus, suppression of STAT3 activity is an important issue for inhibition of gastric carcinogenesis and invasion. Unfortunately, data from clinical studies of direct inhibitor targeting STAT3 have been disappointing. SH2-containing protein tyrosine phosphatase 1 (SHP-1) effectively dephosphorylates and inhibits STAT3 activity, which has not been extensively studied gastric cancer research field. However, by summarizing recent data, it is evident that protein and gene expression of SHP-1 are minimal in gastric cancer cells, and induction of SHP-1 effectively downregulates phosphorylated STAT3 and inhibits cellular invasion in gastric cancer cells. Several SHP-1 inducers have been investigated in the experimental studies, including proton pump inhibitor, arsenic trioxide, and other natural compounds. Taken together, we suggest that modulation of SHP-1/STAT3 signaling axis may present a new way for treatment of gastric cancer, and development of effective SHP-1 inducer may be an important task in the future search field of gastric cancer.

  • PDF

Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease

  • Eun Yeong Lim;Eun-Ji Song;Hee Soon Shin
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1111-1118
    • /
    • 2023
  • As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.