• Title/Summary/Keyword: Immune Enhancing

Search Result 355, Processing Time 0.027 seconds

Regulation of tumor-associated macrophage (TAM) differentiation by NDRG2 expression in breast cancer cells

  • Lee, Soyeon;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.81-86
    • /
    • 2022
  • Macrophages are a major cellular component of innate immunity and are mainly known to have phagocytic activity. In the tumor microenvironment (TME), they can be differentiated into tumor-associated macrophages (TAMs). As the most abundant immune cells in the TME, TAMs promote tumor progression by enhancing angiogenesis, suppressing T cells and increasing immunosuppressive cytokine production. N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor gene, whose expression is down-regulated in various cancers. However, the effect of NDRG2 on the differentiation of macrophages into TAMs in breast cancer remains elusive. In this study, we investigated the effect of NDRG2 expression in breast cancer cells on the differentiation of macrophages into TAMs. Compared to tumor cell-conditioned medium (TCCM) from 4T1-mock cells, TCCM from NDRG2-over-expressing 4T1 mouse breast cancer cells did not significantly change the morphology of RAW 264.7 cells. However, TCCM from 4T1-NDRG2 cells reduced the mRNA levels of TAM-related genes, including MR1, IL-10, ARG1 and iNOS, in RAW 264.7 cells. In addition, TCCM from 4T1-NDRG2 cells reduced the expression of TAM-related surface markers, such as CD206, in peritoneal macrophages (PEM). The mRNA expression of TAM-related genes, including IL-10, YM1, FIZZ1, MR1, ARG1 and iNOS, was also downregulated by TCCM from 4T1-NDRG2 cells. Remarkably, TCCM from 4T1-NDRG2 cells reduced the expression of PD-L1 and Fra-1 as well as the production of GM-CSF, IL-10 and ROS, leading to the attenuation of T cell-inhibitory activity of PEM. These data showed that compared with TCCM from 4T1-mock cells, TCCM from 4T1-NDRG2 cells suppressed the TAM differentiation and activation. Collectively, these results suggest that NDRG2 expression in breast cancer may reduce the differentiation of macrophages into TAMs in the TME.

Antiviral Activity of Plant-derived Natural Products against Influenza Viruses (식물 유래 천연물의 인플루엔자에 대한 항바이러스 활성)

  • Kim, Seonjeong;Kim, Yewon;Kim, Ju Won;Hwang, Yu-bin;Kim, Seong Hyeon;Jang, Yo Han
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.375-390
    • /
    • 2022
  • Influenza viruses are zoonotic respiratory pathogens, and influenza infections have caused a substantial burden on public health systems and the livestock industry. Although currently approved seasonal influenza vaccines have shown potent protection efficacy against antigenically well-matched strains, there are considerable unmet needs for the efficient control of viral infections. Enormous efforts have been made to develop broadly protective universal influenza vaccines to tackle the huge levels of genetic diversity and variability of influenza viruses. In addition, antiviral drugs have been considered important interventions for the treatment of viral infections. The viral neuraminidase inhibitor oseltamivir is the most widely used antiviral medication to treat influenza A and influenza B viruses. However, unsatisfactory clinical outcomes resulting from side effects and the emergence of resistant variants have led to greater attention being paid to plants as a natural resource for anti-influenza drugs. In particular, the recent COVID-19 pandemic has underpinned the need for safe and effective antiviral drugs with a broad spectrum of antiviral activity to prevent the rapid spread of viruses among humans. This review outlines the results of the antiviral activities of various natural products isolated from plants against influenza viruses. Special focus is paid to the virucidal effects and the immune-enhancing effects of antiviral natural products, since the products have broad applications as inactivating agents for the preparation of inactivated vaccines and vaccine adjuvants.

Vitamin D Attenuates Pain and Cartilage Destruction in OA Animals via Enhancing Autophagic Flux and Attenuating Inflammatory Cell Death

  • JooYeon Jhun;Jin Seok Woo;Ji Ye Kwon;Hyun Sik Na;Keun-Hyung Cho;Seon Ae Kim;Seok Jung Kim;Su-Jin Moon;Sung-Hwan Park;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • v.22 no.4
    • /
    • pp.34.1-34.19
    • /
    • 2022
  • Osteoarthritis (OA) is the most common form of arthritis associated with ageing. Vitamin D has diverse biological effect on bone and cartilage, and observational studies have suggested it potential benefit in OA progression and inflammation process. However, the effect of vitamin D on OA is still contradictory. Here, we investigated the therapeutic potential of vitamin D in OA. Six-week-old male Wistar rats were injected with monosodium iodoacetate (MIA) to induce OA. Pain severity, cartilage destruction, and inflammation were measured in MIA-induced OA rats. Autophagy activity and mitochondrial function were also measured. Vitamin-D (1,25(OH)2D3) and celecoxib were used to treat MIA-induced OA rats and OA chondrocytes. Oral supplementation of vitamin D resulted in significant attenuations in OA pain, inflammation, and cartilage destruction. Interestingly, the expressions of MMP-13, IL-1β, and MCP-1 in synovial tissues were remarkably attenuated by vitamin D treatment, suggesting its potential to attenuate synovitis in OA. Vitamin D treatment in OA chondrocytes resulted in autophagy induction in human OA chondrocytes and increased expression of TFEB, but not LC3B, caspase-1 and -3, in inflamed synovium. Vitamin D and celecoxib showed a synergistic effect on antinociceptive and chondroprotective properties in vivo. Vitamin D showed the chondroprotective and antinociceptive property in OA rats. Autophagy induction by vitamin D treatment may be a promising treatment strategy in OA patients especially presenting vitamin D deficiency. Autophagy promoting strategy may attenuate OA progression through protecting cells from damage and inflammatory cell death.

Enhancing the Effects of Zerumbone on THP-1 Cell Activation (단핵구세포주의 활성에 미치는 Zerumbone의 영향)

  • Lee, Min Ho;Kim, Sa Hyun;Ryu, Sung Ryul;Lee, Pyeongjae;Moon, Cheol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Zerumbone is a major component of the essential oil from Zingiber zerumbet Smith, which is a kind of wild ginger. In addition, various biological functions, such as liver protection, pain relief, atherosclerosis, and antimicrobial activity have been reported. It is also known to be effective in the proliferation of immune cells and the expression of cytokines. In this study, we investigated the effects of zerumbone on monocyte activation. First, it was confirmed that the proliferation of THP-1 cells was increased by zerumbone. The strongest increase in THP-1 proliferation after lipopolysaccharide treatment was observed at $5{\mu}M$ zerumbone treatment, and the increase of cell proliferation without lipopolysaccharide was the highest at $10{\mu}M$. Conversely, when treated with $50{\mu}M$ zerumbone, a rapid decrease of proliferation was observed regardless of the presence of lipopolysaccharide (LPS). The phosphorylation of signaling protein, Erk, induced by LPS was also increased by zerumbone. The strongest increase in phosphorylation was observed when treated with $50{\mu}M$ of zerumbone with reduced proliferation. The activity of transcription factor $NF-{\kappa}B$ was not significantly altered by zerumbone alone, but increased when treated with lipopolysaccharide. Furthermore, the transcription of the inflammatory cytokines $TNF-{\alpha}$ and IL-8, which are regulated by $NF-{\kappa}B$, is also increased by zerumbone. These results suggest that zerumbone can enhance the proliferation and activity of monocytes. Furthermore, it is believed that zerumbone can enhance rthe immune responses through increased monocyte activity in bacterial infections with LPS, thereby helping to treat effective bacteria.

Adjuvant Effect of PAMAM Dendrimer on the Antigenicity of Keyhole Limpet Hemocyanin in Balb/c Mice (Balb/c 마우스에서 Keyhole limpet hemocyanine (KLH)의 항원성에 대한 PAMAM dendrimer 의 면역증강 효과)

  • Lee, Ga-Young;Kim, Min Jee;Kim, So Yeon;Lee, Kyung Bok;Oh, Dong Hyun;Cho, Young Ho;Yoo, Yung Choon
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.905-911
    • /
    • 2020
  • The adjuvant effect of PAMAM dendrimer G4 (PAMAM) on the induction of humoral and cellular immune responses against keyhole limpet hemocyanin (KLH) was examined. Mice were immunized subcutaneously twice at two-week intervals with KLH, with or without PAMAM dendrimer (100 ㎍/mouse), and the mice immunized with KLH+PAMAM showed significantly higher antibody titers against KLH than those immunized with KLH alone. The assay for determining the isotypes of the antibodies showed that PAMAM augmented the KLH-specific antibody titers of IgG1, IgG2a, IgG2b, IgG3, and IgM. In addition, mice immunized twice with KLH+PAMAM followed by a subcutaneous injection of KLH (20 ㎍/site) 7 weeks after the primary immunization exhibited a higher delayed-type hypersensitivity (DTH) reaction than those treated with KLH alone. In an in vitro analysis of T lymphocyte proliferation in response to KLH in week 8, the splenocytes of mice treated with KLH+PAMAM showed significantly higher proliferating activity than those treated with KLH alone, and the culture supernatants of cell cultures from mice immunized with added PAMAM dendrimer showed higher levels of KLH-specific cytokine (IL-4 and IFN-r) production. These results suggest that PAMAM dendrimer G4 possesses a potent immune-adjuvant activity for enhancing both humoral and cell-mediated immunity specific to foreign antigens.

Effect of Panax ginseng on the Graft-versus-Host Reaction, Production of Leucocyte Migration Inhibitory Factor and Expulsion of Adult Trichinella spiralis in Mice (인삼이 이식편대숙주반응, 대식세포유주저지반응 및 Trichinella spiralis의 expulsion에 미치는 영향)

  • Ha, Tai-You;Lee, Jeong-Ho;Kim, Sang-Hyung
    • The Journal of the Korean Society for Microbiology
    • /
    • v.21 no.1
    • /
    • pp.133-144
    • /
    • 1986
  • This study was undertaken to assess the effect of ginseng administration on T lymphocyte induced local xenogenic graft-versus-host(GVM) reactions which were induced with thymocyte, spleen cell and lymph node cell of ICR mice. Mice received daily 10mg of 70% alcohol ginseng extract oral1y for 100days and control mice remained untreated for the same period of time. The cells from donor mice were injected intradermally into the closely shaven abdominal skin of Sprague-Dawley rats for GVH tests. The thymocyte from control(ginseng-untreated) mice showed a negative local GVH reaction, whereas thymocyte from experimental(ginseng-treated) mice showed a positive reaction with the rate of 17.4%. When spleen cells were injected, the incidence of positive local GVH reaction was 66.7% among ginseng-treated mice, as opposed to incidence of 45.5% of positive local GVH reaction among control mice. The incidence of positive local GVH reaction of the lymph node cells when injected into a recipient was 71.4% among ginseng-treated mice as compared with that of 18.9% among control mice. The relationship between spleen cell inoculum and intensity of the local GVH reaction was assessed in ginseng-untreated mice. The intensity of GVH reaction clearly appears to be dose related. In ginseng-treated mice, a minimum of $1{\times}10^7$ spleen cell was required for production of positive local GVH reaction with almost linear relationship up to an inoculum of $5{\times}10^8$ cells. In control mice, however, a minimum of $1{\times}10^8$ spleen cells was required for positive GVH reaction. These results strongly suggest that the ginseng administration augments significantly the local xenogenic GVH reaction which was used to assess T lymphocyte function and immunocompetence of mice and in addition to this, these results appear to support previous suggestions that the local GVH reaction consitutes a qualitative test of the functional activity of T lymphocytes. These results may be the first to induce local GVH reaction, employing rats as recipient and mice as donor. This study was also desingned to investigate some of the effects of ginseng extract on lymphocyte-macrophage interactions. This was accomplished by in vitro quantification of 1) migratory inhibitory factor(MIF) synthetic capacity of splenic lymphocytes in mice previously primed with ginseng 2) MIF responsiveness of mouse peritoneal macrophages or chicken peripheral leucocytes under the presence of ginseng extract 3) migration ability of chicken peripheral leucocytes by direct stimulation of ginseng extract or ginseng saponin and 4) immunosuppressive effects of immunosuppressants such as cyclophosphamide, cyclosporin A or dexamethasone. Mice divided equally into the ginseng and the saline groups, which received intraperitoneally daily 0.2ml of ginseng absolute alcohol-extract(5mg/ml) and same amount of saline for 15 days, respectively. The cellular immune responsiveness of these mice was assayed 15 days after ginseng pretreatment. Splenic lymphocytes of mice treated with ginseng, when stimulated with sensitized specific-antigen such as sheep red blood cells or toxoplasmin, or with polyclonal activator concanavalin A, produced significantly more MIF than those of control saline group. MIF responsiveness of normal mouse macrophages was significantly augmented when assayed under the presence of ginseng extract (1mg/ml). The migratory ability of normal chicken leucocytes in the absence of MIF was significantly decreased by the stimulation of ginseng extract alone. MIF response was significantly decreased by immunosuppressants and this impaired response was not restored by ginseng pretreatment. This study was additionally performed to evaluate the effect of ginseng on the expulsion of adult Trichinella spiralis in mice. ICR mice were infected experimentally by esophageal incubation of 300 T. spiralis infective muscle larvae prepared by acid-pepsin digestion of infected mice. and received oral administration of 70% alcohol ginseng extract(10mg/mouse/day) for the indicated days plus 4 days before infection. At various times after infection, the number of adult T. spiralis worms in small intestines was determined. Interestingly, ginseng-treatment was accompanied by accelerated expulson of T. spiralis. These results led to the conclusion that Panax ginseng caused some enhancing effect on GVH reaction, macrophage migration inhibition reaction and expulsion of T. spiralis. In addition these results suggested that the mechanisms responsible for this enhancement of ginseng may be chiefly or partially due to nonspecific stimulation of cell-mediated immune response.

  • PDF

Characteristics of Leuconostoc spp. isolated from radish kimchi and its immune enhancement effect (무김치에서 분리한 Leuconostoc 속의 특성과 면역증강 효과)

  • Seoyeon Kwak;Seongeui Yoo;Jieon Park;Woosoo Jeong;Hee-Min Gwon;Soo-Hwan Yeo;So-Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1082-1094
    • /
    • 2023
  • The purpose of this study was to examine the characteristics of Leuconostoc spp. isolated from radish kimchi and to investigate the potential for the use of functional ingredients by evaluating enzymatic characteristics, safety, and immune-enhancing effects among the isolates, including Lactobacillus rhamnosus ATCC53103 (LGG) as a control strain. All test strains exhibited β-glucosidase enzyme activity that releases β-1,4 sugar chain bonds. In addition, as a result of antibiotic resistance assay among the isolates, MIC values on 8 antibiotics were below compared to the EFSA standard, and hemolytic experiments confirmed that all showed gamma hemolysis without hemolytic ability. As a result of the antibacterial activity experiment, the Leu. mesenteroides K2-4 strain showed a higher activity than LGG against Bacillus cereus and Staphylococcus aureus. Additionally, the activity of the NF-kB/AP-1 transcription factor increased when the isolates were treated in macrophage RAW cells. These results were related to increasing the high mRNA expression levels on TNF-α and IL-6 by Leu. mesenteroides K2-4 strain to be treated at low concentration. Consequently, we suggest that it will be useful as a candidate for functional food ingredients.

Beneficial Effects of Daebong Persimmon against Oxidative Stress, Inflammation, and Immunity in vivo (대봉감의 항산화, 항염증 및 면역증강 효과)

  • Lee, Hee Jae;Lim, So Young;Kang, Min-Gyung;Park, Jeongjin;Chung, Hyun-Jung;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.491-496
    • /
    • 2015
  • The purpose of this study was to assess the antioxidant, anti-inflammatory, and immuno-enhancing effects of Daebong persimmon (DP) and Bansi (BS) in vivo. Two types of astringent persimmons (DP and BS) were used for this experiment. C57BL/6J mice were assigned to the following groups: 1) lean control, 2) high-fat diet control (HF), 3) A region DP (3% wt/wt) with HF diet (A-DP), 4) B region DP with HF diet (B-DP), 5) C region DP with HF diet (C-DP), 6) D region BS with HF diet (D-BS), and 7) E region BS with HF diet (E-BS). All mice were sacrificed after 4 weeks of treatment, after which blood and tissues were collected. Antioxidant enzyme activities, inflammatory markers, and immune factors were evaluated. DP and BS treatments did not alter food intake or body weight, compared with HF. Administration of B-DP increased catalase activities in serum. Hepatic levels of malondialdehyde, a product of lipid peroxidation, were significantly lower in A-DP mice than in the HF group. A-DP had down-regulatory effects against inflammation induced by high-fat diet feeding, as shown by significant reduction of interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor-${\alpha}$. Additionally, A-DP treatment exerted an immuno-stimulatory effect, as shown by increasing levels of immunoglobulin G. DP treatment improved the level of insulin-like growth factor-1. These results indicate that DP has beneficial health effects on oxidative stress, inflammation, and immunity in vivo.

Examination of Antioxidant and Immune-enhancing Functional Substances in Fermented Sea Cucumber (발효해삼의 항산화 및 면역강화 기능성 물질의 분석)

  • Sam Woong Kim;Ga-Hee Kim;Beom Cheol Kim;Lee Yu Bin;Lee Ga Bin;Sang Wan Gal;Chul Ho Kim;Woo Young Bang;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.485-492
    • /
    • 2024
  • Sea cucumbers contain more than 50% protein in their solid content, and they also possess various bioactive substances such as saponins and mucopolysaccharides. This study analyzed the activities of various enzymes derived from Bacillus and lactic acid bacteria and determined to degrade the components of sea cucumbers. Among the analyzed strains, B. subtilis K26 showed the highest activities in protease and xylanase and relatively high activity in cellulase. Accordingly, samples of sea cucumber and water were mixed in equal proportions, sterilized, and then fermented by inoculating them with B. subtilis K26. Following this, a higher amino acid content was observed between 1.5 and 7.5 hr, a lower residual solid content in this time, and a lesser fermentation odor. The saponin content in fermented sea cucumber powder extracted with butanol was measured to be 1.12 mg/g. The chondroitin sulfate content was evaluated to be 5.11 mg/g in raw sea cucumber. The total polyphenol content, flavonoid content, and antioxidant activities were 6.95 mg gallic acid equivalent/g, 3.69 mg quercetin equivalent/g, and 3.69 mg quercetin equivalent/g in raw sea cucumber, respectively. Moreover, the DNA damage protective effect of fermented sea cucumber extract was found to be concentration-dependent, with a very strong effect at very low concentrations. Overall, we suggest that sea cucumber fermented with B. subtilis K26 has a high potential as a food for inhibiting oxidation, enhancing immunity, and improving muscle function in the human body thanks to its high free amino acid content.

Immuno-stimulatory Activities of a High Molecular Weight Fraction from Cynanchum wilfordii Radix Obtained by Ultrafiltration (한외거르기(Ultrafiltration)에 의하여 분리된 백수오 고분자 분획물의 면역증진 활성)

  • Jang, Mi;Lim, Tae-Gyu;Hong, Hee-Do;Rhee, Young Kyoung;Kim, Kyung-Tack;Lee, Eunjung;Lee, Jeong Hoon;Lee, Yun Ji;Kim, Yeon Bok;Cho, Chang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.268-274
    • /
    • 2016
  • The purpose of this study was to investigate the immuno-stimulatory activity of the high-molecular-weight fraction (HMWF) of Cynanchum wilfordii (CW) extracts obtained by ultrafiltration in murine macrophage RAW 264.7 cells and to assess its immuno-stimulatory effect in mice. Ultrafiltration was performed with polyethersulfone membranes (30 kDa cutoff) in a cross-flow filtration system to obtain the HMWF of CW. The results showed that the HMWF increased the production of various cytokines such as tumor necrosis factor-${\alpha}$, interleukin-6, and nitric oxide in dose-ependent manners. In addition, HMWF treatment increased the relative spleen weight as well as splenocyte proliferation induced by concanavalin A or bacterial lipopolysaccharide in mice. Natural killer (NK) cell activity in the HMWF-treated group was significantly increased compared to that in the control group. These results suggest that the HMWF of CW can support the immune system through secretion of macrophage cytokines, thereby enhancing NK cell activity and murine splenocyte proliferation.