• 제목/요약/키워드: Immobilization of whole cells

검색결과 22건 처리시간 0.019초

Photosynthetic Activity, and Lipid and Hydrocarbon Production by Alginate-Immobilized Cells of Botryococcus in Relation to Growth Phase

  • Yashverry, Singh
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.687-691
    • /
    • 2003
  • Whole-cell immobilization of the hydrocarbon rich microalgae, Botryococcus braunii and B. protuberans, in alginate beads under air-lift batch cultures resulted in a significant increase in chlorophyll, carotenoid, dry weight, and 1ipid contents at stationary and resting growth phases, as compared to free cells. Photosynthetic activity in both the species, of Botryococcus was enhanced, relative to free cells, at any growth phase of cultures. Immobilization exerted a protective influence on ageing of the cultures as reflected by higher chlorophyll and dry weight contents. Entrapment also stabilized the chlorophyll and carotenoid contents even at stationary and resting phases as compared to free cells in both the species.

Immobilization of Penicillium citrinum by Entrapping Cells in Calcium Alginate for the Production of Neo-Fructooligosaccharides

  • Lim, Jung-Soo;Park, Seung-Won;Lee, Jin-Won;Oh, Kyeong-Keon;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1317-1322
    • /
    • 2005
  • This work describes neo-fructooligosaccharides (neo-FOSs) production using the immobilized mycelia of Penicillium citrinum. Some critical factors were evaluated to optimize maximal production of neo-FOS. Optimal alginate and cell concentrations were determined to be $1.96\%$ alginate and $7.17\%$ cell, respectively, by statistical analysis. The optimal concentration of $CaCl_{2}$, which is related to bead stability, was determined to be 2 M. It was possible to increase the neo-FOS production by adding 15 units of glucose oxidase to the batch reaction. By co-immobilizing cells and glucose oxidase, neoFOS productivity increased $123\%$ compared with the whole-cell immobilization process. Based on the results above, a co-immobilization technique was developed and it can be utilized for large-scale production.

포도주의 신맛 조절을 위한 Leuconostoc oenos 세포의 고정화 (Immobilization of Leuconostoc oenos Cells for Wine Deacidification)

  • 이수오;박무영
    • 한국식품과학회지
    • /
    • 제12권4호
    • /
    • pp.299-304
    • /
    • 1980
  • Leuconostoc oenos ML-34균의 세포를 polyacrylamide gel 속에 고정시키고, 이것을 이용하여 포도즙과 포도주의 신맛을 감소시켜 보았다. 세포가 가졌던 malo-lactic 발효능은 고정화 시킴으로서 감소되지는 않았다. 그러나 고정화 세포에 의한 사과산 분해의 속도는 느려졌는데, 이것은 기질이 gel층을 통과하는데 시간이 걸리기 때문이었다. 고정화 세포로서 포도즙 속의 사과산의 양을 적절한 수준까지 감소시킴으로서 포도주의 신맛을 조절할 수 있을 것 같다.

  • PDF

Brevibacterium lipolyticum 변이주에 의한 1,4-Androstadiene-3, 17-Dione의 생성 (Production of 1,4-Androstadiene-3,17-dione by a Mutant Strain of Brevibacterium lipolyticum)

  • 최인화;이강만
    • 약학회지
    • /
    • 제33권6호
    • /
    • pp.365-371
    • /
    • 1989
  • Microbiological conversion of sterols to 17-ketosteroids has been recognized as a source for commercial preparation of steroidal drugs. In order to develop bacterial strains and process with Brevibacterium lipolyticum IAM 1398 capable of converting cholesterol to 1,4-Androstadiene-3,17-dione (ADD) at about 27% yield, we studied on strain improvement, fermentation condition and whole cell immobilization. By using UV and/or NTG as mutagens, a mutant to convert cholesterol to ADD with higher yield than 60% was selected. Better production of ADD was manifested in the case of maltose used as a supplemental carbon source, and yeast extract or soytone as a nitrogen source. Addition of tween 80 (0.05%) as a surfactant beneficial for increasing the productivity. The optimal initial pH of the medium was 6.5 and optimal culture temperature was $30^{\circ}C$. Whole cell immobilization by using carrageenan, agar, alginate and acrylamide was carried out and the activity of conversion was tested. In the case of carrageenan and agar, immobilized cells were active for at least two cycles of fermentation.

  • PDF

Effect of Glutaraldehyde Treatment on Stability of Permeabilized Ochrobactrum anthropi SY509 in Nitrate Removal

  • Park, Young-Tae;Park, Jae-Yeon;Park, Kyung-Moon;Choi, Suk-Soon;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1803-1808
    • /
    • 2008
  • For practical application, the stability of permeabilized Ochrobactrum anthropi SY509 needs to be increased, as its half-life of enzymatic denitrification is only 90 days. As the cells become viable after permeabilization treatment, this can cause decreased activity in a long-term operation and induce breakage of the immobilization matrix. However, the organic solvent concentration causing zero cell viability was 50%, which is too high for industrial application. Thus, whole-cell immobilization using glutaraldehyde was performed, and 0.1% (v/v) glutaraldehyde was determined as the optimum concentration to maintain activity and increase the half-life. It was also found that 0.1% (v/v) glutaraldehyde reacted with 41.9% of the total amine residues on the surface of the cells during the treatment. As a result, the half-life of the permeabilized cells was increased from 90 to 210 days by glutaraldehyde treatment after permeabilization, and no cell viability was detected.

Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane

  • Mardina, Primata;Li, Jinglin;Patel, Sanjay K.S.;Kim, In-Won;Lee, Jung-Kul;Selvaraj, Chandrabose
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1234-1241
    • /
    • 2016
  • Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30℃, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.

Aspergillus Phoenicis Whole Cell의 ${\beta}-Galactosidase$ 활성(活性)에 관한 연구(硏究) (Studies on the ${\beta}-Galactosidase$ Activity of Whole Cell Aspergillus Phoenicis)

  • 김말남
    • 한국균학회지
    • /
    • 제11권3호
    • /
    • pp.109-114
    • /
    • 1983
  • Aspergillus phoenicis의 ${\beta}-galactosidase$ 활성을 ONPG와 lactose를 기질로서 사용하여 조사하였다. 이 효소 활성은 성장의 대수기 동안은 서서히 증가하였으나 정지기가 시작되면서 급격하게 감소하였다. 또한 이 효소는 높은 온도에서도 좋은 효소 활성을 유지하였으며, 산성 pH에서 최고의 효소활성을 나타내었다. ${\beta}-galactosidase$는 lactose보다 ONPG에 대한 기질의 친화력이 더 좋았으며, 효소 활성도 ONPG의 경우가 더 높았다. Lactose의 가수분해율은 반응액중의 lactose의 농도가 낮을 수록 높았으며, 사용균의 무게에 따라 초기에는 증가하다가 어느 수준 이상에서 부터는 점근값을 나타내었다. 효소의 활성은 효소의 고정 방법 및 조건에 영향을 받았으며, matrix의 가교가 pH 7.2 및 0.35 vol. %의 glutaraldehyde 농도에서 행하여졌을 때, 가장 높은 효소 활성을 보였다.

  • PDF

Corynebacterium glutamicum 고정화균체에 의한 L-라이신 연속발효 (Continuous Fermentationof L-Lysine by Immobilized Corynebacterium glutamicum)

  • 이인선;조정일
    • 한국식품영양과학회지
    • /
    • 제23권2호
    • /
    • pp.322-327
    • /
    • 1994
  • L-라이신 생산성의 향상을 목적으로 생체반응기를 이용한 연속발효시스템의 개발을 시도하였다. 먼저, Corynebacterium glutamicum ATCC 21514균체의 고정화조건에 대하여 검토하였는데 균체를 4% k-carrageenan에 포괄하였을 때 76.2%의 고정화율을 나타내었고, 겔강도는 4.0kg이었다. 이 고정화균체를 사용하여 생체반응기를 제작하여 L-라이신의 연속생산에 응용하였으며, 최적조건하에서 얻은 결과를 회분식의 결과와 비교하였다. 14일간의 연속발표에서 얻는 실험결과 공급당의 L-라이신으로의 전환율은 36.7%이었고, L-라이신의 생산성은 4.96mg/ml/mg-dry cell weight/hr로서 생균체나 고정화균체에 의한 회분식발효의 경우에 비하여 각각 2.5배와 4.1배 높았다.

  • PDF

포도당 이성화를 위한 Alkalophilic Streptomyces sp. B-2의 균체 고정화에 관한 연구 (Studies on the Cell Immobilization of Alkalophilic Streptomyces sp. B-2 for the Glucose Isomerization)

  • 이은숙
    • 한국식품영양학회지
    • /
    • 제11권3호
    • /
    • pp.319-322
    • /
    • 1998
  • 본 실험에서는 GI 활성이 높은 alkalophilic Streptomyces sp.를 사용하여 2% $ extsc{k}$-carrageenan에 균체를 고정화 균체의 효소학적 특성을 살펴보았다. pH stability는 pH가 7.5~8.5에서 GI 활성이 가장 높았으며, reaction temperature는 7$0^{\circ}C$, Co2+는 10-3M, Mg2+는 10-3M일 때 GI 활성이 가장 높은 것으로 나타났다.

  • PDF

Biodiesel Production: Utilization of Loofah Sponge to Immobilize Rhizopus chinensis CGMCC #3.0232 Cells as a Whole-Cell Biocatalyst

  • He, Qiyang;Xia, Qianjun;Wang, Yuejiao;Li, Xun;Zhang, Yu;Hu, Bo;Wang, Fei
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1278-1284
    • /
    • 2016
  • Rhizopus chinensis cells immobilized on loofah (Luffa cylindrica) sponges were used to produce biodiesel via the transesterification of soybean oil. In whole-cell immobilization, loofah sponge is considered to be a superior alternative to conventional biomass carriers because of its biodegradable and renewable properties. During cell cultivation, Rhizopus chinensis mycelia can spontaneously and firmly adhere to the surface of loofah sponge particles. The optimal conditions for processing 9.65 g soybean oil at 40℃ and 180 rpm using a 3:1 methanol-to-oil molar ratio were found to be 8% cell addition and 3-10% water content (depending on the oil's weight). Under optimal conditions, an over 90% methyl ester yield was achieved after the first reaction batch. The operational stability of immobilized Rhizopus chinensis cells was assayed utilizing a 1:1 methanol-to-oil molar ratio, thus resulting in a 16.5-fold increase in half-life when compared with immobilized cells of the widely studied Rhizopus oryzae. These results suggest that transesterification of vegetable oil using Rhizopus chinensis whole cells immobilized onto loofah sponge is an effective approach for biodiesel production.