Browse > Article

Immobilization of Penicillium citrinum by Entrapping Cells in Calcium Alginate for the Production of Neo-Fructooligosaccharides  

Lim, Jung-Soo (Department of Chemical and Biological Engineering, Korea University)
Park, Seung-Won (Food Ingredient Division, CJ Foods R & D, CJ Corp.,)
Lee, Jin-Won (Department of Chemical and Biomolecular Enginnering, Sogang University)
Oh, Kyeong-Keon (Department of Industrial Chemistry, Dankook University)
Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.6, 2005 , pp. 1317-1322 More about this Journal
Abstract
This work describes neo-fructooligosaccharides (neo-FOSs) production using the immobilized mycelia of Penicillium citrinum. Some critical factors were evaluated to optimize maximal production of neo-FOS. Optimal alginate and cell concentrations were determined to be $1.96\%$ alginate and $7.17\%$ cell, respectively, by statistical analysis. The optimal concentration of $CaCl_{2}$, which is related to bead stability, was determined to be 2 M. It was possible to increase the neo-FOS production by adding 15 units of glucose oxidase to the batch reaction. By co-immobilizing cells and glucose oxidase, neoFOS productivity increased $123\%$ compared with the whole-cell immobilization process. Based on the results above, a co-immobilization technique was developed and it can be utilized for large-scale production.
Keywords
Neo-fructooligosaccharide; Penicillium citrinum; calcium alginate immobilization; co-immobilization;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Hidaka, H., M. Hirayama, and N. Sumi. 1998. A fructooligosaccharide producing enzyme from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 52: 1181-1187
2 Park, Y. K. and M. M. Almeida. 1991. Production of fructooligosaccharides from sucrose by a transfructolase from Aspergillus niger. World J. Microbiol. Biotechnol. 7: 331-334   DOI   ScienceOn
3 Hayashi, S., T. Hayashi, J. Kinoshita, Y. Takasaki, and K. Imada. 1992. Immobilization of $\beta$-fructofuranosidase from Aureobasidium sp. ATCC 20524 on porous silica. J. Ind. Microbiol. 9: 247-250   DOI
4 Devi, S. and P. Sridhar. 1999. Optimization of critical parameters for immobilization of Streptomyces clavuligerus on alginate gel matrix for cephamycin C production. World J. Microbiol. Biotechnol. 15: 185-192   DOI   ScienceOn
5 Chien, C. S., W. C. Lee, and T. J. Lin. 2001. Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzyme Microb. Tech. 29: 252-257   DOI   ScienceOn
6 Nadeau, D. A. 2000. The role of short-chain fructooligosaccharides in health and disease. Nutr. Clin. Care 3: 266-273   DOI   ScienceOn
7 Yun, J. W., K. W. Jung, Y. J. Jeon, and J. H. Lee. 1992. Continuous production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. J. Microbiol. Biotechnol. 2: 98-101
8 Hirayama, M., N. Sumi, and H. Hidaka. 1998. Purification and properties of a fructooligosaccharide-producing $\beta$- fructofuranosidase from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 53: 667-673
9 Long, J. C., W. C. Lee, and S. H. Guo. 2000. Immobilization of cell-associated enzyme by entrapping in gluten matrix. Biocatal. Biotransform. 17: 431-433   DOI   ScienceOn
10 Urgell, M. R. and A. S. Orleans. 2001. Oligosaccharides: Application in infant food. Early Hum. Dev. 65: 43-44   DOI   ScienceOn
11 Sheu, D. C., P. J. Lio, S. T. Chen, C. T. Lin, and K. J. Duan. 2001. Production of fructooligosaccharides in high yield using a mixed enzyme system of $\beta$-fructofuranosidase and glucose oxidase. Biotechnol. Lett. 23: 1499-1503   DOI   ScienceOn
12 Kilian, S. G., F. C. W. Sutherland, P. S. Meyer, and J. C. du Preez. 1996. Transport-limited sucrose utilization and neokestose production by Phaffia rhodozyma. Biotechnol. Lett. 18: 975-980   DOI   ScienceOn
13 Yun, J. W., M. G. Lee, and S. K. Song. 1994. Batch production of high-content fructooligosaccharides from sucrose by the mixed-enzyme system of $\beta$-fructofuranosidase and glucose oxidase. J. Ferment. Bioeng. 77: 159-163   DOI   ScienceOn
14 Hidaka, H., M. Hirayama, and N. Sumi. 1998. A fructooligosaccharide producing enzyme from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 52: 1181-1187
15 Su, Y. C., C. S. Sheu, Y. Y. Chien, and T. K. Tzan. Production of $\beta$-fructofuranosidase with transfructosylating activity for fructooligosaccharides synthesis by Aspergillus japonicus NTU-1249. Life Sci. 15: 131-139   DOI   ScienceOn
16 Hayashi, S., T. Yoshiyama, N. Fujii, and S. Shinohara. 2000. Production of a novel syrup containing neofructooligosaccharides by the cells of Penicillium citrinum. Biotechnol. Lett. 22: 1465-1469   DOI   ScienceOn
17 Kilian, S. G., S. Kritzinger, C. Rycroft, G. Gibson, and J. C. du Preez. 2002. The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J. Microbiol. Biotechnol. 18: 637-644   DOI   ScienceOn
18 Yun, J. W. and S. K. Song. 1993. The production of highcontent fructooligosaccharides from sucrose by the mixed enzyme system of fructosyltransferase and glucose oxidase. Biotechnol. Lett. 15: 573-576   DOI   ScienceOn
19 Cruz, R., M. Z. Belini, J. G. Belote, and C. R. Vieira. 1998. Production of fructooligosaccharides by the mycelia of Aspergillus japonicus immobilized in calcium alginate. Biores. Technol. 65: 139-143   DOI   ScienceOn
20 L'Hocine, L., Z. Wang, B. Jiang, and S. Xu. 2000. Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J. Biotechnol. 81: 73-84   DOI   ScienceOn