Immobilization of Penicillium citrinum by Entrapping Cells in Calcium Alginate for the Production of Neo-Fructooligosaccharides

  • Lim, Jung-Soo (Department of Chemical and Biological Engineering, Korea University) ;
  • Park, Seung-Won (Food Ingredient Division, CJ Foods R & D, CJ Corp.,) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Enginnering, Sogang University) ;
  • Oh, Kyeong-Keon (Department of Industrial Chemistry, Dankook University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2005.12.01

Abstract

This work describes neo-fructooligosaccharides (neo-FOSs) production using the immobilized mycelia of Penicillium citrinum. Some critical factors were evaluated to optimize maximal production of neo-FOS. Optimal alginate and cell concentrations were determined to be $1.96\%$ alginate and $7.17\%$ cell, respectively, by statistical analysis. The optimal concentration of $CaCl_{2}$, which is related to bead stability, was determined to be 2 M. It was possible to increase the neo-FOS production by adding 15 units of glucose oxidase to the batch reaction. By co-immobilizing cells and glucose oxidase, neoFOS productivity increased $123\%$ compared with the whole-cell immobilization process. Based on the results above, a co-immobilization technique was developed and it can be utilized for large-scale production.

Keywords

References

  1. Hidaka, H., M. Hirayama, and N. Sumi. 1998. A fructooligosaccharide producing enzyme from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 52: 1181-1187
  2. Park, Y. K. and M. M. Almeida. 1991. Production of fructooligosaccharides from sucrose by a transfructolase from Aspergillus niger. World J. Microbiol. Biotechnol. 7: 331-334 https://doi.org/10.1007/BF00329399
  3. Su, Y. C., C. S. Sheu, Y. Y. Chien, and T. K. Tzan. Production of $\beta$-fructofuranosidase with transfructosylating activity for fructooligosaccharides synthesis by Aspergillus japonicus NTU-1249. Life Sci. 15: 131-139 https://doi.org/10.1016/0024-3205(74)90201-X
  4. Yun, J. W. and S. K. Song. 1993. The production of highcontent fructooligosaccharides from sucrose by the mixed enzyme system of fructosyltransferase and glucose oxidase. Biotechnol. Lett. 15: 573-576 https://doi.org/10.1007/BF00138542
  5. Nadeau, D. A. 2000. The role of short-chain fructooligosaccharides in health and disease. Nutr. Clin. Care 3: 266-273 https://doi.org/10.1046/j.1523-5408.2000.00068.x
  6. Urgell, M. R. and A. S. Orleans. 2001. Oligosaccharides: Application in infant food. Early Hum. Dev. 65: 43-44 https://doi.org/10.1016/S0378-3782(01)00202-X
  7. Cruz, R., M. Z. Belini, J. G. Belote, and C. R. Vieira. 1998. Production of fructooligosaccharides by the mycelia of Aspergillus japonicus immobilized in calcium alginate. Biores. Technol. 65: 139-143 https://doi.org/10.1016/S0960-8524(98)00005-4
  8. Hayashi, S., T. Hayashi, J. Kinoshita, Y. Takasaki, and K. Imada. 1992. Immobilization of $\beta$-fructofuranosidase from Aureobasidium sp. ATCC 20524 on porous silica. J. Ind. Microbiol. 9: 247-250 https://doi.org/10.1007/BF01569631
  9. Yun, J. W., K. W. Jung, Y. J. Jeon, and J. H. Lee. 1992. Continuous production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. J. Microbiol. Biotechnol. 2: 98-101
  10. Hidaka, H., M. Hirayama, and N. Sumi. 1998. A fructooligosaccharide producing enzyme from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 52: 1181-1187
  11. Hirayama, M., N. Sumi, and H. Hidaka. 1998. Purification and properties of a fructooligosaccharide-producing $\beta$- fructofuranosidase from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 53: 667-673
  12. Hayashi, S., T. Yoshiyama, N. Fujii, and S. Shinohara. 2000. Production of a novel syrup containing neofructooligosaccharides by the cells of Penicillium citrinum. Biotechnol. Lett. 22: 1465-1469 https://doi.org/10.1023/A:1005627828876
  13. Kilian, S. G., F. C. W. Sutherland, P. S. Meyer, and J. C. du Preez. 1996. Transport-limited sucrose utilization and neokestose production by Phaffia rhodozyma. Biotechnol. Lett. 18: 975-980 https://doi.org/10.1007/BF00154633
  14. Kilian, S. G., S. Kritzinger, C. Rycroft, G. Gibson, and J. C. du Preez. 2002. The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J. Microbiol. Biotechnol. 18: 637-644 https://doi.org/10.1023/A:1016808015630
  15. L'Hocine, L., Z. Wang, B. Jiang, and S. Xu. 2000. Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J. Biotechnol. 81: 73-84 https://doi.org/10.1016/S0168-1656(00)00277-7
  16. Long, J. C., W. C. Lee, and S. H. Guo. 2000. Immobilization of cell-associated enzyme by entrapping in gluten matrix. Biocatal. Biotransform. 17: 431-433 https://doi.org/10.3109/10242420009003634
  17. Yun, J. W., M. G. Lee, and S. K. Song. 1994. Batch production of high-content fructooligosaccharides from sucrose by the mixed-enzyme system of $\beta$-fructofuranosidase and glucose oxidase. J. Ferment. Bioeng. 77: 159-163 https://doi.org/10.1016/0922-338X(94)90316-6
  18. Chien, C. S., W. C. Lee, and T. J. Lin. 2001. Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzyme Microb. Tech. 29: 252-257 https://doi.org/10.1016/S0141-0229(01)00384-2
  19. Sheu, D. C., P. J. Lio, S. T. Chen, C. T. Lin, and K. J. Duan. 2001. Production of fructooligosaccharides in high yield using a mixed enzyme system of $\beta$-fructofuranosidase and glucose oxidase. Biotechnol. Lett. 23: 1499-1503 https://doi.org/10.1023/A:1011689531625
  20. Devi, S. and P. Sridhar. 1999. Optimization of critical parameters for immobilization of Streptomyces clavuligerus on alginate gel matrix for cephamycin C production. World J. Microbiol. Biotechnol. 15: 185-192 https://doi.org/10.1023/A:1008814427427