• 제목/요약/키워드: Immersed-Boundary Method

검색결과 157건 처리시간 0.021초

비대칭 장력 모델을 이용한 예인 물체의 유체-구조 상호작용 모사 (SIMULATION OF FLUID-STRUCTURE INTERACTION OF A TOWED BODY USING AN ASYMMETRIC TENSION MODEL)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.7-13
    • /
    • 2011
  • The fluid-structure interaction of a towed body is simulated using a developed code, which is based on the flux-difference splitting scheme on the hybrid Cartesian/immersed boundary method. To improve the stability in the coupling between the fluid and structure domains, a scheme is used, in which the effects of structure deformation are treated implicitly. The developed code is validated for the fluid-structure interaction problem through comparisons with other results on the vortex-induced vibration of elastically mounted cylinders. To simulate behavior of a towed body, an asymmetric tension modelling for a towing cable is suggested. In the suggested model, the tension is proportional to the elongation of the cable, but the cable has no effect on the body motion whenever the distance between the endpoints of the cable is smaller than the original length of the cable. The fluid-structure interactions of a towed body are simulated on the basis of different parameters of the towing cables. It is observed that the suggested tension model predicts the snapping for a shorter towing cable, which is in accordance with the reported results.

삼차원 원형주상체의 축방향 직경변화가 열.유동장에 미치는 영향 (CHARACTERISTICS OF THE FLOW AND HEAT TRANSFER AROUND A WAVY CYLINDER)

  • 이창열;서장훈;윤현식;전호환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.131-136
    • /
    • 2008
  • Three-dimensional characteristics of fluid flow and heat transfer around a wavy circular cylinder having sinusoidal variation in cross sectional area along the spanwise direction are numerically investigated using the immersed boundary method. The three different wavelengths of ${\pi}/4$, ${\pi}/3$ and ${\pi}/2$ and at the fixed wavy amplitude of 0.1 have been considered to investigate the effects of waviness on especially the forced convection heat transfer around a wavy cylinder when the Reynolds and Prandtl numbers are 300 and 0.71, respectively. The present computational results for a wavy cylinder are compared with those for a smooth cylinder. The time- and total surface-averaged Nusselt number for a wavy cylinder with is larger than that for a smooth cylinder, whereas that with ${\lambda}={\pi}/4$ and ${\pi}/3$ is smaller than that for a smooth cylinder. However, because the surface area exposed to heat transfer for a wavy cylinder is larger than that for a smooth cylinder, the total heat transfer rate for a wavy cylinder with different wavelengths of ${\lambda}={\pi}/4$, ${\pi}/3$ and ${\pi}/2$ is larger than that for a smooth cylinder.

  • PDF

탄성 튜브가 연결된 펌핑 챔버를 이용한 무밸브 펌프의 수치해석 (Simulation of Valveless Pump Using Pumping Chamber Connected to Elastic Tube)

  • 신수재;장정봉;성형진
    • 대한기계학회논문집B
    • /
    • 제37권2호
    • /
    • pp.111-117
    • /
    • 2013
  • 탄성튜브가 연결된 펌핑 챔버를 이용한 무밸브 펌프를 가상경계방법을 이용하여 수치적으로 연구하였다. 탄성 튜브와 펌핑 챔버 사이의 상호작용으로 인하여 무밸브 펌프 내의 유동이 생성되었으며, 탄성튜브의 스트레칭 계수, 벤딩 계수, 종횡비가 무밸브 펌프의 전체 유량에 미치는 영향을 살펴보았다. 펌프의 메커니즘을 이해하고자, 시간에 따른 탄성 튜브의 움직임과 그에 따른 유동 속도의 변화를 자세히 살펴보았으며, 탄성 튜브의 직경 크기와 펌프의 평균 유량 사이의 관계를 분석하였다.

MULTIDIMENSIONAL OPEN SYSTEM FOR VALVELESS PUMPING

  • JUNG, EUNOK;KIM, DO WAN;LEE, JONGGUL;LEE, WANHO
    • 대한수학회보
    • /
    • 제52권6호
    • /
    • pp.1973-2000
    • /
    • 2015
  • In this study, we present a multidimensional open system for valveless pumping (VP). This system consists of an elastic tube connected to two open tanks filled with a fluid under gravity. The two-dimensional elastic tube model is constructed based on the immersed boundary method, and the tank model is governed by a system of ordinary differential equations based on the work-energy principle. The flows into and out of the elastic tube are modeled in terms of the source/sink patches inside the tube. The fluid dynamics of this system is generated by the periodic compress-and-release action applied to an asymmetric region of the elastic tube. We have developed an algorithm to couple these partial differential equations and ordinary differential equations using the pressure-flow relationship and the linearity of the discretized Navier-Stokes equations. We have observed the most important feature of VP, namely, the existence of a unidirectional net flow in the system. Our computations are focused on the factors that strongly influence the occurrence of unidirectional flows, for example, the frequency, compression duration, and location of pumping. Based on these investigations, some case studies are performed to observe the details of the ow features.

주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동 토폴로지 변화 (CHANGE OF CHANNEL-FLOW TOPOLOGY BY A STREAMWISE-PERIODIC ARRAY OF ROTATING CIRCULAR CYLINDERS)

  • 정태경;양경수;이경준;강창우
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.17-24
    • /
    • 2013
  • In this study, we consider the characteristics of channel flow in the presence of an infinite streamwise array of equispaced identical rotating circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall for some selected angular speeds. An immersed boundary method was employed to facilitate implementing the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. The presence of the rotating circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to increase of mean friction on the channel walls. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of rotating cylinders to modify flow topology, which might be used to enhance heat transfer on the channel walls.

직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석 (Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh)

  • 한명륜;안형택
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.

Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow

  • Chen, Weilin;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • 제29권1호
    • /
    • pp.43-53
    • /
    • 2019
  • Vortex-induced vibration of three circular cylinders (each of diameter D) in an equilateral triangular arrangement is investigated using the immersed boundary method. The cylinders, with one placed upstream and the other two side-by-side downstream, are free to vibrate in the cross-flow direction. The cylinder center-to-center spacing L is adopted as L/D = 2.0. Other parameters include the Reynolds number Re = 100, mass ratio $m^*=2.0$, reduced velocity $U_r=2{\sim}15$ and damping ratio ${\zeta}=0$. Cylinder vibration responses are dependent on $U_r$ and classified into five regimes, i.e. Regime I ($U_r{\leq}3.2$), Regime II ($3.2<U_r{\leq}5.0$), Regime III ($5.0<U_r{\leq}6.4$), Regime IV ($6.4<U_r{\leq}9.2$) and Regime V ($U_r>9.2$). Different facets of vibration amplitude, hydrodynamic forces, wake patterns and displacement spectra are extracted and presented in detail for each regime.

주기적으로 배열된 원형 실린더를 이용한 채널 유동의 열전달 증진 (HEAT TRANSFER ENHANCEMENT IN CHANNEL FLOW BY A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS)

  • 정태경;양경수;이경준;강창우
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.85-92
    • /
    • 2013
  • In this study, we consider heat transfer enhancement in laminar channel flow by means of an infinite streamwise array of equispaced identical circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall. An immersed boundary method was employed to facilitate to implement the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. Also, the Prandtl number is fixed as 0.7. For thermal boundary conditions on the solid surfaces, it is assumed that heat flux is constant on the channel walls, while the cylinder surfaces remain adiabatic. The presence of the circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. The Nusselt number averaged on the channel wall is presented for the wide ranges of Reynolds number and the gap. A significant heat transfer enhancement is noticed when the gap is larger than 0.8, while the opposite is the case for smaller gaps. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

유체 유동을 동반한 수치상결정 미세구조의 3차원 성장에 대한 수치해석적 연구 (NUMERICAL SIMULATION OF THREE-DIMENSIONAL DENDRITIC GROWTH WITH FLUID CONVECTION)

  • 윤익로;신승원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.355-362
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid to solid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material which governs the physical properties of final product. In this paper, we expand our previous two-dimensional numerical technique to three-dimensional simulation for computing dendritic solidification process with fluid convection. We used Level Contour Reconstruction Method to track the moving liquid-solid interface and Sharp Interface Technique to correctly implement phase changing boundary condition. Three-dimensional results showed clear difference compared to two-dimensional simulation on tip growth rate and velocity.

  • PDF

Vibro-acoustic modelling of immersed cylindrical shells with variable thickness

  • Wang, Xianzhong;Lin, Hongzhou;Zhu, Yue;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.343-353
    • /
    • 2020
  • Based on the Precise Transfer Matrix Method (PTMM), the dynamic model is constructed to observe the vibration behaviour of cylindrical shells with variable thickness by solving a set of first-order differential equations. The free vibration of stiffened cylindrical shells with variable thickness can be obtained to compare with the exact solution and FEM results. The reliability of the present method of free vibration is well proved. Furthermore, the effect of thickness on the vibration responses of the cylindrical shell is also discussed. The acoustic response of immersed cylindrical shells is analyzed by a Pluralized Wave Superposition Method (PWSM). The sound pressure coefficient can be gained by collocating points along the meridian line to satisfy the Neumann boundary condition. The mode convergence analysis of the cylindrical shell is carried out to guarantee calculation precision. Also, the reliability of the present method on sound radiation is verified by comparing with experimental results and numerical results.