DOI QR코드

DOI QR Code

Simulation of Valveless Pump Using Pumping Chamber Connected to Elastic Tube

탄성 튜브가 연결된 펌핑 챔버를 이용한 무밸브 펌프의 수치해석

  • 신수재 (한국원자력연구원 신형원자로개발연구소) ;
  • 장정봉 (한국과학기술원 기계공학과) ;
  • 성형진 (한국과학기술원 기계공학과)
  • Received : 2012.05.17
  • Accepted : 2012.11.01
  • Published : 2013.02.01

Abstract

A valveless pump consisting of a pumping chamber with an elastic tube was simulated using an immersed boundary method. The interaction between the motion of the elastic tube and the pumping chamber generated a net flow toward the outlet through a full cycle of the pump. The net flow rate of the valveless pump was examined by varying the stretching coefficient, bending coefficient, and aspect ratio of the elastic tube. Photographs of the fluid velocity vectors and the wave motions of the elastic tube were examined over one cycle of the pump to gain a better understanding of the mechanism underlying the valveless pump. The relationship between the gap in the elastic tube and the average flow rate of the pump was analyzed.

탄성튜브가 연결된 펌핑 챔버를 이용한 무밸브 펌프를 가상경계방법을 이용하여 수치적으로 연구하였다. 탄성 튜브와 펌핑 챔버 사이의 상호작용으로 인하여 무밸브 펌프 내의 유동이 생성되었으며, 탄성튜브의 스트레칭 계수, 벤딩 계수, 종횡비가 무밸브 펌프의 전체 유량에 미치는 영향을 살펴보았다. 펌프의 메커니즘을 이해하고자, 시간에 따른 탄성 튜브의 움직임과 그에 따른 유동 속도의 변화를 자세히 살펴보았으며, 탄성 튜브의 직경 크기와 펌프의 평균 유량 사이의 관계를 분석하였다.

Keywords

References

  1. Liebau, G., 1954. "Uber ein Ventilloses Pumpprinzip," Naturwiss, Vol. 41, pp. 327-328.
  2. Thomann, H., 1978, "A Simple Pumping Mechanism in a Valveless Tube," J. Appl. Math. Phys, Vol.29, pp. 169-177. https://doi.org/10.1007/BF01601511
  3. Moser, M., Huang, J.W., Schwarz, G.S., Kenner, T. and Noordergraaf, A., 1998, "Impedance Defined Flow, Generalization of William Harvey's Concept of the Circulation-370 Years Later," Int. J. Cardiovasc. Med. Sci., Vol.71, pp. 205-211.
  4. Hickerson, A.I., Rinderknecht, D. and Gharib, M., 2005, "Experimental Study of the Behavior of a Valveless Impedance Pump," Exp. Fluids,Vol.38, No.4, pp. 534-540. https://doi.org/10.1007/s00348-005-0946-z
  5. Rinderknecht, D., Hickerson, A.I. and Gharib, M., 2005, "A Valveless Micro Impedance Pump Driven by Electromagnetic Actuation," J. Micromech. Microeng., Vol.15, pp. 861-866. https://doi.org/10.1088/0960-1317/15/4/026
  6. Jung, E. and Peskin, C.S., 2001, "Two-Dimensional Simulations of Valveless Pumping Using the Immersed Boundary Method," Siam J. Sci. Comput., Vol.23, pp. 19-45. https://doi.org/10.1137/S1064827500366094
  7. Shin, S.J. and Sung, H.J., 2010, "Three-Dimensional Simulation of a Valveless Pump," Int. J. Heat Fluid Flow, Vol.31, pp. 942-951. https://doi.org/10.1016/j.ijheatfluidflow.2010.05.001
  8. Stemme, E. and Stemme, G., 1993, "A Valveless Diffuser/Nozzle-Based Fluid Pump," Sens. Actuator A, Vol.39, pp. 159-167. https://doi.org/10.1016/0924-4247(93)80213-Z
  9. Nguyen, N.-T. and Huang, X., 2000, "Numerical Simulation of Pulse-Width-Modulated Micropumps with Diffuser/Nozzle Elements," Nanyang Technological University.
  10. Yang, K.-S., Chen, I.-Y. and Wang, C.-C., 2006, "Performance of Nozzle/Diffuser Micro-Pumps Subject to Parallel and Series Combinations," Chem. Eng. Technol., Vol.29, No.6, pp. 703-710. https://doi.org/10.1002/ceat.200500275
  11. Liu, Y., Komatsuzaki, H., Imai, S. and Nishioka, Y., 2011, "Planar Diffuser/Nozzle Micropumps with Extremely Thin Polyimide Diaphragms," Sens. Actuator A, Vol.169, pp. 259-265. https://doi.org/10.1016/j.sna.2011.02.009
  12. Shin, S.J. and Sung, H.J., 2011, "Inertial Migration of an Elastic Capsule in a Poiseuille Flow," Phys. Rev. E, Vol.83, No.4, pp. 321-333.
  13. Huang, W.-X., Shin, S.J. and Sung, H.J., 2007, "Simulation of Flexible Filaments in a Uniform Flow by the Immersed Boundary Method," J. Comput. Phys., Vol.226, pp. 2206-2228. https://doi.org/10.1016/j.jcp.2007.07.002