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MULTIDIMENSIONAL OPEN SYSTEM

FOR VALVELESS PUMPING

Eunok Jung, Do Wan Kim, Jonggul Lee, and Wanho Lee

Abstract. In this study, we present a multidimensional open system

for valveless pumping (VP). This system consists of an elastic tube con-
nected to two open tanks filled with a fluid under gravity. The two-

dimensional elastic tube model is constructed based on the immersed
boundary method, and the tank model is governed by a system of ordi-

nary differential equations based on the work-energy principle. The flows

into and out of the elastic tube are modeled in terms of the source/sink
patches inside the tube. The fluid dynamics of this system is generated

by the periodic compress-and-release action applied to an asymmetric

region of the elastic tube. We have developed an algorithm to couple
these partial differential equations and ordinary differential equations

using the pressure-flow relationship and the linearity of the discretized

Navier-Stokes equations. We have observed the most important feature
of VP, namely, the existence of a unidirectional net flow in the system.

Our computations are focused on the factors that strongly influence the

occurrence of unidirectional flows, for example, the frequency, compres-
sion duration, and location of pumping. Based on these investigations,

some case studies are performed to observe the details of the flow features.

1. Introduction

The phenomenon of a unidirectional net flow driven by pumping without
valves is generally called as valveless pumping (VP) or Liebau’s effect. The
mechanism of VP has been explained in either a closed-loop tubing system
or an open tank system connected by an elastic tube. In both cases, the
fluid-structure (elastic tube) interaction by periodic pumping applied to an
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asymmetric location of the elastic tube apparently causes a unidirectional flow.
In the 1950s, Liebau first studied VP in closed and open systems to explain the
mechanism of heart circulation [19, 20, 21]. Many previous studies on VP have
reported that there exists not only the interesting fluid dynamics of VP itself
but also an efficient and controllable pump mechanism for VP. For instance,
a VP system can generate an efficient net flow by controlling the parameters
related to the driving force or tube materials. Therefore, VP has been studied
extensively through experiments [10, 19, 20, 21, 34], analytical theories [1, 26,
32, 36], and mathematical models [3, 4, 11, 12, 14, 15, 17, 22, 24, 26, 35, 37].

To utilize VP, its controllability is of importance. Unfortunately, it is not
yet apparent why a unidirectional net flow exists in VP systems; this flow is
believed to be closely related to factors such as the external excitation fre-
quency, elastic wave on the tube, fluid pressure wave, and their correlations.
Experiments as well as both simplified modeling and flow simulation with fluid-
structure interaction are essential for determining the underlying physics of a
valveless flow system. Ottesen [26] reported that the net flow inside a closed
elastic loop changes its direction owing to the enforced pumping frequency us-
ing a one-dimensional model derived from the Navier-Stokes equations under
some assumptions of flow motions. Manopoulos et al. [24] derived a nonlinear
one-dimensional hyperbolic partial differential equation (PDE) to consider the
flow separation hydraulic losses at the divergent part of the stenosis in the exci-
tation region. Bringley et al. [4], in an interesting study, focused on comparing
the results of model with experiments. They introduced an evolutionary quan-
tity to establish a relation with the flow direction observed by Liebau. Borzi
and Propst [3] showed that the nonlinearity of the open tank system is not
the main factor responsible for the occurrence of the Liebau effect using the
accurate computation of a mathematically modified model. Auerbach et al. [1]
attempted to introduce a Liebau number that may explain the Liebau effect
through an analytic approach in their simplified model of an asymmetric flat
pipe derived from the Euler equation. Most recently, Timmermann and Otte-
sen [37] modeled an open tank system by using the nonstationary Bernoulli
principle along a streamline in the tank. They added a marked explanation to
the mechanism of valveless flow in an open tank system by introducing hori-
zontal slope frequencies. Although the simplified model reveals physics from
VP systems, it differs considerably from the real flow pattern, and therefore,
there must be some limitations.

On the other hand, according to the facts reported in [11, 15, 17], in which
the full Navier-Stokes models were employed, a valveless flow is known to be
strongly affected by the manner in which the elastic tube and the fluid in it
interact. This implies that one cannot expect to understand the occurrence
of valveless net flow clearly until the interacting flow field in the elastic tube
is calculated. Inspired by this viewpoint, we develop a multidimensional fluid-
structure model for an open system of VP flow. To calculate the incompressible
Navier-Stokes flow (PDE model) interacting with the elastic tube, we employ a
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volume-conserved immersed boundary (IB) method. In fact, we have success-
fully applied this IB method to a couple of valveless flow problems of interest
[15, 17]. Because the fluid levels in the two tanks in our open system are mov-
ing upwards and downwards, it is very difficult to calculate the detailed flow
with the full PDE model of the Navier-Stokes equations. Therefore, the flow
in rigid tanks is modeled as the motion of the entire fluid parcel contained in
each tank. Using the work-energy principle, a system of ordinary differential
equations (ODEs) can be derived for the tank model. In this study, we combine
these two physical models using the relationship between the flux and the pres-
sure. First, small source/sink regions called patches are introduced in the flow
inside the tube. These regions are viewed as junctions to the tanks. The flux
passing through these regions is derived from the energy principle of the fluid
parcels in tanks; furthermore, the pressure on these regions can be calculated
from the Navier-Stokes equations associated with the source/sink. This type
of bridging method has been developed recently by Jung et al. for heart simu-
lations [16]. Modeling the pressure-flux relationship in the source/sink regions
becomes the key idea in our bridging approach. The success of this model is
attributed to the linear formulation in the fast Fourier transform(FFT) solver
for the Navier-Stokes flow. The key advantage of our method in the open tank
model lies in simulating the detailed flow bounded by the moving wall of the
elastic tube using the full Navier-Stokes equations.

The remainder of this paper is organized as follows. In Section 2, the multi-
dimensional open VP model is introduced: Subsections 2.1 and 2.2 respectively
describe the Navier-Stokes flow model associated with the flow in the moving
elastic tube (PDE model) and the two-tank model (ODE model). Section 3
presents the numerical implementations for merging the two models. Section 4
presents and discusses the obtained numerical results. Section 5 presents the
summary and conclusions of this study.

2. Mathematical model of open VP system

In this section, we present a mathematical model of an open VP system. Our
open VP model comprises an elastic tube connected to two open tanks. The
elastic tube model and the two-tank model are governed by the incompressible
Navier-Stokes equations and the ODEs, respectively. The volume-conserved IB
method is used for solving the incompressible Navier-Stokes flow interacting
with the elastic tube. The fluid motion is generated by the periodic compress-
and-release action that is applied on an asymmetric location of the elastic
tube. The flow model inside the tank is derived from the energy principle
under gravity.

Fig. 1 shows the initial configuration of the two-dimensional elastic tube
model. A rectangular box with a long x-axis serves as the computational do-
main Ω , and it is filled with a viscous incompressible fluid interacting with the
elastic tube in the form of a closed curve Γ . The elastic tube comprises two
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Figure 1. The initial configuration of the elastic tube model
immersed in the computational box is shown. Regions 1 and
2 represent the sources/sinks for coupling the elastic tube and
the tank. Region 0 is the exterior source/sink for preserving
the total volume inside the computational domain.

parts with different stiffness: (almost) rigid part (thick curves) and soft part
(thin upper and lower boundaries). There are two source/sink regions inside
the tube to couple the elastic tube and the tank. Because the periodic bound-
ary conditions for the velocity and pressure are imposed on the outer boundary
of the computational domain, the total volume should be conserved in the en-
tire computational box. Therefore, we add the exterior source/sink outside the
tube (region 0). The second quarter of the tube from the left (thick red elastic
tube) is typically chosen as the location of the external pumping source in our
simulations. Note that the open tanks are not visible in this initial configura-
tion, because the tank model is governed by the ODE system. However, two
tanks are virtually attached to regions 1 and 2 by the relationship between the
flux and the pressure.

In Subsection 2.1, we first consider the equations of motion due to the fluid-
structure system that are formulated by the improved volume-conserved IB
method [31]. In Subsection 2.2, based on the energy principle, we describe the
open tank model under gravity.

2.1. IB model for tube

In this subsection, we present a mathematical formulation of the equations of
fluid-structure motion using the volume-conserved IB method. The IB method
has been applied to diverse fluid-structure interaction problems in the areas of
biophysics and biomedicine, such as two- and three-dimensional simulations of
blood flow in the heart [8, 27, 28, 29, 30], design of prosthetic cardiac valves
[25], wave propagation in the cochlea [2], VP in a closed loop [11, 12, 14, 15,
17, 22], simulations of whirling instability [23], higher-order IB method [9],
single-cell modeling of tumor dynamics [33], flow of suspensions [7], peristaltic
pumping of solid particles [5], and aquatic animal locomotion [6]. Although
the IB method can be used to deal with sophisticated and time-dependent
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materials that interact with the fluid, it has been observed that the volume is
not conserved strictly. To reduce the loss of volume during the computation,
we employ the volume-conserved IB method in [31].

We describe the mathematical formulation of our PDE system. The fluid
velocity, fluid pressure, and fluid force density are denoted by u(x, t), p(x, t),
and f(x, t) for the space variable x = (x, y) and time t, respectively. The
constant fluid density ρ and fluid viscosity µ are used. The velocity and force
density due to the elastic material (tube) are denoted by U(s, t) and F(s, t),
respectively. The configuration of the elastic material is described in terms
of the Lagrangian variable X(s, t), where the parameter s denotes a material
point of the elastic boundary. Then, the governing equations are written as
follows:

(1) ρ

(
∂u

∂t
+ u · ∇u

)
+∇p = µ∇2u + f ,

(2) ∇ · u =

2∑
j=0

Qj(t)ψj(x),

(3) f(x, t) =

∫
Γ

F(s, t)δ(x−X(s, t)) ds,

∂X

∂t
(s, t) = U(X(s, t), t)(4)

=

∫
Ω

u(x, t)δ(x−X(s, t)) dx,

(5) F(s, t) = κt(Z(s, t)−X(s, t))− ∂E

∂X
,

(6) E[X] =
1

2
κs

∫
Γ

(∣∣∣∣∂X

∂s

∣∣∣∣− 1

)2

ds+
1

2
κb

∫
Γ

∣∣∣∣∂2X

∂s2

∣∣∣∣2 ds.
Eqs. (1) and (2) are the viscous incompressible Navier-Stokes equations in

Eulerian coordinates; it should be noted that the continuity equation is modi-
fied to allow for the source/sink of fluid in the tube. Furthermore, the variable
Qj(t) is introduced for combining this model with the tank model. Actually,
by placing fixed source/sink regions (regions 1 and 2) at both ends of the tube
by defining the functions ψj in (2), the fluid in the two tanks can flow into the
tube through these regions and the reverse flow can occur as well. The sup-
ports of the source/sink regions are shown in Fig. 1 as shaded squares, region
0. Eqs. (3) and (4) are the interaction equations between the fluid and the
elastic tube in the Lagrangian form. A two-dimensional Dirac delta function
is present in both equations. In Eq. (3), the fluid force density is obtained by
spreading the elastic force density into the fluid using the Dirac delta function.
Eq. (4) is the no-slip condition of the viscous fluid. The immersed boundary
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moves at the local fluid velocity. Eq. (5) represents the boundary force density
as a sum of two terms. The first term provides a force that keeps the elastic
boundary positions, X(s, t), near the given target positions, Z(s, t). The target
position plays a role in maintaining the shape of the tube and applying periodic
pumping to the elastic tube. In our model, the same target position as that
in [17] is used. The variational derivative of the energy − ∂E

∂X in the second
term of Eq. (5) represents the elastic force density generated by stretching and
bending. The parameter κt is a stiffness constant between the elastic tube and
the target positions, and the parameters κs and κb are the stiffness and bending
coefficients for the elastic boundary, respectively. We use different values of κt
for the (almost) rigid part and the elastic part (see Table 1); however, we use
the same value for κs and κb for the whole tube.

The spatial distribution of the exterior and interior sources/sinks are speci-
fied by nonnegative weight functions ψj(x) for j = 0, 1, 2, which are bell-shaped
on the rectangular support. Each function ψj is positive over the correspond-
ing region and zero otherwise, and its integral over the entire fluid domain Ω
is 1:

∫
Ω
ψj(x) dx = 1. The interior weight functions ψ1 and ψ2 of the tube

are centered at the locations (x∗1, y
∗
1) = (3.5, 2) and (x∗2, y

∗
2) = (12.5, 2), respec-

tively, and they have a square support with side a = 0.5. The interior weight
functions are described as follows: for j=1 or 2,

ψj(x, y)

=


1

a2

(
1 + cos

( π

a/2
x̄j

))(
1 + cos

( π

a/2
ȳj

))
for (x̄j , ȳj) ∈ [−a2 ,

a
2 ]2,

0 otherwise,

where x̄j = x − x∗j and ȳj = y − y∗j . The exterior weight function ψ0 has a
support in the rectangle, region 0, and it is expressed as follows:

ψ0(x, y)

=


1

2M

M∑
i=1

1

a2

(
1 + cos

( π

a/2
x̄
))(

1 + cos
( π

a/2
ȳi

))
for (x̄, ȳi) ∈ [−a2 ,

a
2 ]2,

0 otherwise,

where x̄ = x − x∗, ȳi = y − y∗ − ∆y(i − 1), and M is the number of weight
functions to be averaged. The center point (x∗, y∗) to generate the exterior
source/sink starts from (0.5, 0.5) and (15.5, 0.5) for the left and right part
of the exterior weight functions, respectively. Because we use two exterior
sources/sinks near the edges of the domain, the integral of each exterior weight
function over the entire fluid domain is 1/2.

The variable Qj(t)ψj(x), j = 0, 1, 2 is the total flux through region j at time
t, because the integral of ψj(x) over the whole fluid domain is 1. A positive
and negative value of Qj(t) represents a source and a sink, respectively. Due
to the periodic boundary condition on the computational domain, the total
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flux through the exterior sources/sinks is determined by Q0 = −(Q1 + Q2).
Therefore, Eq. (2) can be rewritten as

(7) ∇ · u =

2∑
j=1

Qj(t)(ψj(x)− ψ0(x)).

In our multidimensional simulations, the average flow in the PDE tube model
is interchanged through the source/sink (regions 1 and 2) to communicate with
the ODE tank model. Because the average pressure is the main variable in
the tank model, as discussed in the next subsection, we need to calculate the
average pressure in regions 1 and 2 from the pressure solution of the IB model
(1)–(5) for the interaction between the PDE and the ODE systems.

The average pressure at each region j is defined by

(8) p̄j =

∫
Ω

p(x, t)ψj(x) dx, j = 0, 1, 2,

where p(x, t) is the fluid pressure of the IB model. Then, the real pressure level
in region j can be defined using a reference pressure outside the tube. The
average pressure p̄0 at the exterior source/sink is used as a reference pressure
in our simulations. The following equation defines the pressure level, Pj , in
region j:

(9) Pj = p̄j(t)− p̄0(t) =

∫
Ω

p(x, t)(ψj(x)− ψ0(x)) dx.

The pressure level Pj for j = 1, 2 is used for combining the IB model with the
tank model in Subsection 2.2.

2.2. Energy preserving model for tanks

This subsection describes the open tank model based on the work-energy
principle. It should be noted that the fluxes Q1(t) and Q2(t) have not yet
been determined. To drive the flux interaction equations between the IB tube
model and the open tank model, it is important to derive physically meaningful
flux conditions at both junctions between the elastic tube and the two tanks.
Toward this end, the principle of energy transfer is employed, i.e., the time rate
of change in energy (or work) of a lumped fluid in the tank is equivalent to the
power done by the surroundings under gravity. Two rigid cuboidal tanks with
a square base are attached to regions 1 and 2. The heights of the fluid in the
left and the right tank are denoted by H1(t) and H2(t), respectively. In the
tanks, the inertia force of the fluid is assumed to be dominant enough to ignore
the friction force due to viscosity. In addition, the fluid in a tank is assumed
to move up and down with the same velocity as if it is a single body, i.e., the
velocities of the lump of fluid in the tanks, v1(t) and v2(t), are functions of
time only for the incompressibility of the fluid. If the internal energy of the
fluid is ignored, then the total energy e1 of the fluid in the left tank is the sum
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of the kinetic and potential energies, and it is given as follows:

e1 =

∫ H1(t)

0

1

2
ρv2

1(t)a1dy +

∫ H1(t)

0

ρgya1dy,(10)

where the parameters g and a1 represent the gravitational constant and the
cross-sectional area of the left rigid tank, respectively.

By substituting the relation Q1(t) = a1v1(t) into the energy Eq. (10), we
obtain the following equation:

e1 =
1

2
ρa1H1(t)v2

1 +
1

2
ρga1H

2
1 (t)(11)

=
1

2
ρQ2

1(t)
H1(t)

a1
+

1

2
ρga1H

2
1 (t).

Furthermore, the fluid velocity in the left tank satisfies v1(t) = −Ḣ1. Then,
the incompressibility leads to the time rate of changes for e1 as follows:

ė1 = ρQ1(t)Q̇1(t)
H1(t)

a1
+

1

2
ρQ2

1(t)
Ḣ1(t)

a1
+ ρga1H1(t)Ḣ1(t)(12)

= ρQ1(t)Q̇1(t)
H1(t)

a1
− 1

2
ρQ2

1(t)
Q1(t)

a2
1

− ρgQ1(t)H1(t).

The sign of the fluid velocity in the tank is set to be positive if the direction of
flux is from the tank to the tube for both the left and the right tanks.

On the other hand, the time rate of change for the energy e1 is equal to
the work per unit time done by the surrounding air pressure P atm on the top
surface of the tank and the pressure level in region 1, i.e.,

ė1 = −(P1(t) + P atm)Q1(t),(13)

where P1 is defined at (9). For flux Q1(t), comparing (12) and (13), we conclude

Q̇1 =
Q2

1(t)

2a1H1(t)
+ ga1 −

a1

ρ

P1(t) + P atm

H1(t)
.(14)

Similarly, we can derive the following model for Q2(t):

Q̇2 =
Q2

2(t)

2a2H2(t)
+ ga2 −

a2

ρ

P2(t) + P atm

H2(t)
.(15)

Using the relationship between the flux and the fluid velocity, we can also
calculate the time rate of change for the tank height as follows:

(16) Ḣ1 = − 1

a1
Q1(t),

and

(17) Ḣ2 = − 1

a2
Q2(t).
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Eqs. (14)–(17) are the governing equations for the tank model. In the next
section, we discuss how this tank model is coupled to the PDE tube model in
the numerical implementation.

3. Numerical implementation

This section describes how the PDE tube model and the ODE tank model
are merged in the numerical implementation. In our simulations, a first-order
volume-conserved IB method is employed for solving the two-dimensional PDE
tube (1)–(5), and the Runge-Kutta-Fehlberg method is used for solving the
ODE tank model (14)–(17).

The objective is to compute the updated fluid velocity and position, un+1

and Xn+1, respectively, from the given un and Xn. This is done in the following
steps:

Step 1. The immersed boundary force density Fn is obtained by the boundary
configuration Xn and the given target position Zn.

(18) Fn = κt
(
Zn −Xn

)
+

∂

∂s
(Tnτn)− κb

∂4Xn

∂s4
,

where

(19) Tn = κs

(∣∣∣∣∂Xn

∂s

∣∣∣∣− 1

)
and τn =

∂Xn

∂s

/∣∣∣∣∂Xn

∂s

∣∣∣∣.
Here, Tn is the tension and τn, the unit tangent vector. For more
detailed descriptions of the stretching and bending force densities, see
[18].

Step 2. The fluid force density fn is calculated by spreading the boundary force
density Fn into the nearby fluid grid using the discrete δ-function.

(20) fn =
∑
s

Fn(s)δ2(x−Xn(s))∆s,

where δ2(x) is the discretized two-dimensional Dirac delta function,
and ∆s is the distance between boundary points.

Step 3. Consider the discretized version of the Navier-Stokes system (1) and
(7) as follows:

(21)


ρ

(
un+1−un

∆t
+ (un · ∇±

h )un
)

+D0pn+1 = µ
∑
α=1,2

D+
αD

−
αun+1+fn,

D0 · un+1 =

2∑
j=1

Qn+1
j (ψj(x)− ψ0(x)),

where un ·∇±
h = unD±

x +vnD±
y , and D± represents the upwind scheme.

We use the forward (D+) and backward (D−) difference operators in
the standard way. For the central difference operator D0, we employed
the volume-conserved operator introduced by [31].
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The periodic boundary condition on the computational domain en-
ables us to effectively solve the flow system using FFT. It should be
noted that Qn+1

1 and Qn+1
2 have not yet been determined. These two

flow values are obtained by Steps 3.1 and 3.2 as described below.
Step 3.1 This step is more important for solving our multidimensional sys-

tem. Because the system (21) is linear in the unknown un+1 and
pn+1, we can split the system (21) into the following three systems:

ρ

(
un+1
f −un

∆t
+(un · ∇±

h )un
)

+ D0pn+1
f =µ

∑
α=1,2

D+
αD

−
αun+1

f +fn,

D0 · un+1
f = 0,

(22)


ρ
un+1

1

∆t
+ D0pn+1

1 = µ
∑
α=1,2

D+
αD

−
αun+1

1 ,

D0 · un+1
1 = ψ1(x)− ψ0(x),

(23)

and
ρ
un+1

2

∆t
+ D0pn+1

2 = µ
∑
α=1,2

D+
αD

−
αun+1

2 ,

D0 · un+1
2 = ψ2(x)− ψ0(x).

(24)

In the first system (22), the full Navier-Stokes equations without
the source/sink terms are considered. Because fn and un are
known values, we can solve the system to update un+1

f and pn+1
f .

Because the second and third systems, (23) and (24), respectively,
involve only the given weight functions in the source/sink term,
ψj for j = 0, 1, 2, without the convection and body force terms,

we can also update (un+1
1 , pn+1

1 ), and (un+1
2 , pn+1

2 ). Then, using
the linearity of (21), the solutions un+1 and pn+1 can be written
as follows:

un+1 = un+1
f +Qn+1

1 un+1
1 +Qn+1

2 un+1
2 ,(25)

pn+1 = pn+1
f +Qn+1

1 pn+1
1 +Qn+1

2 pn+1
2 .(26)

Step 3.2 Now, we consider the discretized ODE tank model. We use the
Runge-Kutta-Fehlberg method for solving four equations, Eqs.
(14)–(17). However, the number of unknowns, Qi, Hi, and Pi for
i = 1, 2, is six. To derive two more equations for pressure, the
pressures P1 and P2 in (9) are used:

Pn+1
1 =

∑
x

pn+1(x)
(
ψ1(x)− ψ0(x)

)
h2,

Pn+1
2 =

∑
x

pn+1(x)
(
ψ2(x)− ψ0(x)

)
h2,
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where
∑

x denotes the sum over the rectangular lattice with the
mesh size h in the physical space in which the fluid variables are
defined. If we substitute Eq. (26) into the above two equations for
Pn+1

1 and Pn+1
2 , the average pressures in regions 1 and 2 can be

simply rewritten as

(27) Pn+1
1 = c10 + c11Q

n+1
1 + c12Q

n+1
2 ,

(28) Pn+1
2 = c20 + c21Q

n+1
1 + c22Q

n+1
2 ,

where the coefficients are calculated to be

c10 =
∑
x

pn+1
f (x)(ψ1(x)− ψ0(x))h2,

c11 =
∑
x

pn+1
1 (x)(ψ1(x)− ψ0(x))h2,

c12 =
∑
x

pn+1
2 (x)(ψ1(x)− ψ0(x))h2,

c20 =
∑
x

pn+1
f (x)(ψ2(x)− ψ0(x))h2,

c21 =
∑
x

pn+1
1 (x)(ψ2(x)− ψ0(x))h2,

c22 =
∑
x

pn+1
2 (x)(ψ2(x)− ψ0(x))h2.

pn+1
f , pn+1

1 , and pn+1
2 are obtained from Step 3.1. Consequently,

we can solve four ODEs (14)–(17) associated with (27) and (28)
for Pn+1

j , Qn+1
j , and Hn+1

j for j = 1, 2.

Using the computed values, Qn+1
1 and Qn+1

2 , we can complete Step
3 to compute un+1 and pn+1.

Step 4. The updated fluid velocity un+1 obtained in Step 3 is interpolated into
the old boundary position Xn by the discrete Dirac delta function.
Finally, we can update Xn+1 by solving the following:

(29) Xn+1(s) = Xn(s) + ∆t
∑
x

un+1(x)δ2(x−Xn(s))h2.

4. Numerical results and discussion

In this section, we discuss the numerical results of the open VP system.
Various fluid motions are produced in the open VP system by applying periodic
forcing at an asymmetric location on the elastic tube (see Fig. 1). Tables 1 and
2 respectively show the physical and numerical parameters in CGS units.

In this study, we focus on the main features of VP that have been reported in
previous studies of closed or open VP systems: the existence of a unidirectional
net flow and the parameter sensitivity of the direction and magnitude of a net
flow. Because our system is not closed, a net flow is always zero after the
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Table 1. Physical parameters.

Physical parameters Symbol Value

Computational domain Xscale × Yscale 16 cm× 4 cm

Length of tube L 10 cm

Radius of tube r 0.5 cm

Initial fluid height in tank H1 = H2 10 cm

Cross-sectional area of tank a1 = a2 4 cm2

Fluid density ρ 1 g/cm3

Gravitational constant g 980 g · cm/s2

Fluid viscosity µ 0.01 g/(cm · s)
Frequency f (1/T ) 0.5Hz ∼ 60Hz

Compression duration d 0.1 ∼ 1

Amplitude (target) A0 0.6r = 0.3 cm

Stiffness (rigid tube) κt 5.0 × 106 g/(cm · s2)

Stiffness (soft tube) κt 5.0 × 105 g/(cm · s2)

Stiffness (stretching) κs 5.0 × 104 g/s2

Stiffness (bending) κb 3.0 × 102 g · cm/s2

Table 2. Computational parameters.

Computational parameters Symbol Value

Fluid grid Nx ×Ny 512 × 128

Number of upper (lower) soft boundary points Mupper = Mlower 1024

Number of left (right) rigid boundary points Mleft = Mright 402

Mesh width h = ∆x = ∆y 0.03125 cm

Initial distance between boundary points ∆s = h/4 0.0078125 cm

Time step ∆t 2.5 × 10−5 s

Simulated time tmax 1 s∼ 20 s

periodic steady-state is reached. We define the flow causing a height difference
between the two tanks as a net directional flow. The net directional flow, which
is measured by the time-averaged height difference from the right to the left
tank, has a positive or negative value. A positive value denotes a flow from
the left to the right tank, and a negative value denotes a flow in the opposite
direction.

We first check the validation of our model and then present parametric
studies on the effect of the frequency and compression duration of driving force,
and the location and width of pumping. The fluid dynamics in some cases is
also investigated.
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4.1. Validation

We consider two different settings. In the first setting, the same tank width,
2 cm, is considered for both tanks; however, the initial fluid levels in the tanks
are different. As the initial state, the fluid levels in the left and the right tanks
are chosen as 13 cm and 7 cm, respectively. In the second setting, different
tank widths and fluid levels are considered. The tank widths and fluid levels
are 1 cm and 18 cm for the left tank and 2 cm and 8 cm for the right tank,
respectively. The simulation duration is 20 s, and other parameters are listed
in Tables 1 and 2. Figs. 2 and 3 show the fluid heights in both tanks as a
function of time for the first and second settings, respectively. As expected,
in both settings, oscillatory motions are observed initially, and then, the levels
of the left and right tanks reach almost 10 cm, which is the equilibrium state.
In fact, the fluid levels at the steady-state are not exactly 10 cm, because the
gravity and elasticity of the tube lead to a little fluid in the tanks seeping into
the elastic tube for equilibrium.

Now, we check the numerical accuracy. A convergence test is performed by
the solutions computed on three different grid sizes of Nx × Ny = 256 × 64,
512 × 128, and 1024 × 256. A subscript of the velocity field denotes the grid
size in the x direction. For instance, u256 represents the u-directional velocity
in the grid size of 256 × 64. The convergence ratio for the velocity field (u, v)
in L2 norm is 1.9014 at t = 1 s and f = 10Hz, that is,√

‖u512 − u256‖22 + ‖v512 − v256‖22√
‖u1024 − u512‖22 + ‖v1024 − v512‖22

= 1.9014.

This ratio is close to 2, which implies that the scheme is first-order accurate in
time.

4.2. Parametric studies

The time-averaged height differences between two tanks as func-
tions of the frequency and the compression duration of pumping. We
first investigate the impact of the pumping frequency on the open VP model.
Fig. 4 shows the time-averaged height differences between two tanks as a func-
tion of the pumping frequency. The frequency range is 0.5–60 Hz, in which
337 different values are considered, and the compression duration is fixed as
d = 0.5. Other parameters are listed in Tables 1 and 2. The compression
duration is defined by the ratio of the time for compression and relaxation
during a period. For example, if the compression duration d is equal to 0.5,
then compression is applied for the first half of the period and relaxation, for
the rest of the period. Each dot in the figure indicates an individual numeri-
cal experiment during the simulated time, 5 s. The positive or negative value
indicates the existence of a net directional flow. From Fig. 4, it is obvious
that VP strongly depends on the pumping frequency, as observed in previous
studies [4, 11, 12, 14, 15, 17, 22, 24, 26, 35, 37]. Two positive peaks at around
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Figure 2. The fluid levels in tanks as a function of time are
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different initial height levels are imposed. The left and right
tank levels are chosen as 13 cm and 7 cm, respectively.
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Figure 3. The fluid levels in tanks as a function of time are
shown. The tank widths and fluid heights are chosen as 1 cm
and 18 cm for the left tank and 2 cm and 8 cm for the right
tank, respectively.

f = 16Hz and f = 52Hz and one negative peak at around f = 33Hz are
observed, implying that the flow direction and level difference are determined
by the driving frequency. At most frequencies less than around 14 Hz, almost
zero flows are observed.

Next, we investigate the effect of the compression duration of pumping on
the net directional flow. Fig. 5 shows the time-averaged height differences
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Figure 4. The time-averaged height differences between two
tanks as a function of the frequency is shown.

between two tanks as functions of the frequency and the compression dura-
tion. We consider 148 curves for a frequency of 0.05–60 Hz with 10 different
compression durations from 0.1 to 1. The ten curves of the level differences
as a function of the frequency at the fixed compression duration have similar
patterns. However, the magnitude of the level difference is mostly maximized
around intermediate values of the compression duration, and it decreases at ex-
tremes of the compression duration. Overall, it is confirmed that the frequency
and compression duration are critical factors in controlling the VP mechanism.

In Fig. 6, the free vibration of the upper boundary of the tube at the middle
of the pumping region, x = 7 cm, and its Fourier transform with 10,000 sample
points over 1 s is shown in the top and bottom frames, respectively. The
displacement of the observed point as a function of time is generated by the
external pumping over five periods with the pumping frequency f = 5Hz and
compression duration d = 0.5 and then by vibration without external pumping
for the rest of the simulated time. The Fourier transform in the bottom frame
in Fig. 6 shows a natural frequency at 17Hz and harmonics at 35Hz and
56Hz. As expected, these frequencies approximately coincide with the peak
frequencies shown in Fig. 4, which are f = 16Hz, 33Hz, and 52Hz.

Influence of the location and the width of pumping region. We
investigate the influence of the location and width of the pumping region on
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Figure 5. The time-averaged height differences between two
tanks as functions of the frequency and the compression dura-
tion are shown.

the open VP system. The parameters are listed in Tables 1 and 2, except
for d = 0.5. Pumping is applied to the left part of the elastic tube in all
simulations.

In Fig. 7, first, we consider four different pumping positions with a fixed
length of pumping region, 1

8×length of the elastic part of the tube. The pump-
ing location is shifted from the left (C0) to the right (C3). Next, in Fig. 8,
we consider three different widths of the pumping region. The widths of the
pumping regions, P1, P2, and P3, are 1 cm, 1.5 cm, and 2 cm, respectively;
however, the center for pumping is fixed in the left one-fourth of the elastic
tube for all three cases. In Fig. 7, at frequencies below 30 Hz, almost zero
net directional flows are observed except near a positive peak at f = 16Hz in
all four cases. However, there is no consistency in the curves at frequencies
higher than 30 Hz. Timmermann and Ottesen recently reported [37] that the
pumping position does not change the location of the resonance points. This
is because the range of the frequency they considered is below 16 Hz. We
also observe that positive net directional flows dominate if pumping is applied
to location C0, which is the left-most end of the elastic tube. This result is
consistent with a previous study [17]. Furthermore, the magnitudes of the level
difference at most peaks are larger at pumping location C0 than in other cases.
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Figure 6. Free vibration test at the middle of the pumping
region on the upper tube at f = 5Hz is shown in the top
frame. Its Fourier transform on the bottom frame shows a
natural frequency at 17Hz and harmonics at 35Hz and 56Hz.
Other parameters are listed in Tables 1 and 2.

As the pumping location moves toward the center, as is the case with location
C3, the magnitudes of the level difference at most peaks decrease. We need a
high frequency to obtain larger level differences, as is the case with location C3.
The results shown in Fig. 8 are quite different from those shown in Fig. 7: the
three curves have similar patterns except for the magnitude. A larger magni-
tude is produced as a longer pumping width is applied. The scales of the y-axis
in Fig. 7 and Fig. 8 are different. Overall, similar features are investigated if
the center of pumping is fixed. A large amount of net directional flow is ob-
tained by choosing a long pumping width. If the pumping length is fixed, then
an efficient net directional flow can be obtained by controlling the pumping
location.
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Figure 7. The time-averaged height differences between two
tanks as a function of the frequency are plotted at four different
pumping positions. An initial configuration with four different
pumping positions is shown in the top left-hand corner of the
figure. The same pumping length is chosen as 1

8×length of the
elastic part of the tube.

4.3. Case studies

In this subsection, three special cases are considered for studying the motions
of fluid dynamics in detail. We chose these cases based on the results shown
in Fig. 4: an almost zero, a positive peak, and a negative peak net directional
flow. A net directional flow is again measured by the time-averaged height
difference between two tanks. We chose the following three cases:

• Positive net directional flow
f = 16Hz (averaged level difference: 8.066 cm)
• Almost zero net directional flow
f = 25Hz (averaged level difference: 0.026 cm)
• Negative net directional flow
f = 33Hz (averaged level difference: −6.637 cm)

The parameters are the same as those shown in Fig. 4. The fluid motions
are driven by the oscillations imposed on the left second quarter of the elastic
part of the tube. For all three cases, we investigated the level differences as a
function of time to show the nature of oscillations and the net progress of fluid
motions. Fig. 9 shows the height differences of the fluid level in two tanks as
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Figure 8. The time-averaged height differences between two
tanks as functions of the frequency are plotted at three dif-
ferent widths of the pumping region. An initial configuration
with three different widths of the pumping region is shown in
the top of the figure. The lengths of the regions P1, P2, and
P3 are 1 cm, 1.5 cm, and 2 cm, respectively, with a quarter of
the elastic part of the tube as the center.

a function of time over the simulated time. The positive net directional flow
at f = 16Hz, almost zero net directional flow at f = 25Hz, and negative
net directional flow at f = 33Hz are considered in the first, second, and third
rows, respectively. The first column shows the height differences between the
two tanks as a function of time over the simulated time 5 s. For the detailed
motions of height differences, the last 5 cycles of height differences are shown
in the second column. Fig. 9 clearly shows the existence of net directional flow
in our open tank VP system. Furthermore, we can observe almost periodic
motions of height differences, and the period of the height difference is almost
the same as that of external pumping, 1/f , in all three cases.

Because we use the IB method for solving the PDE system, the volume
loss is one of the critical issues. In Fig. 10, the volume loss ratios, (Vini −
V (t))/Vini, is shown for the cases with pumping frequency f = 16Hz (dot),
25Hz (solid), and 33Hz (dash) and the case without pumping (dotted dash)
over the simulation time of 1 s. Vini represents the initial volume of the tube.
Fig. 10 shows that the maximum volume loss is around 0.2 % over the time
duration of 5 s.
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Figure 9. Case studies: the left column shows the height
difference between two tanks as a function of time over the
simulation time of 5 s, and the right column shows the motions
of the height difference HR-HL during the last five cycles in
detail.

Figs. 11 and 12 show six snapshots of the tube boundaries and fluid motions
over one period for the case of positive (f = 16Hz) and negative (f = 33Hz)
net directional flows, respectively. One period for the snapshots is chosen
during the transition time starting at 5 s. The first snapshot is chosen at
t = 0.5 s, which is during the transition time before the steady state is reached
(see Fig. 9). The tail represents the trace of the fluid marker, and the red wall
boundary represents the region for periodic pumping. The fluid levels in the
virtual tanks are shown in each snapshot. For a positive net directional flow
(Fig. 11), the fluid motions are driven by the compression period and the release
period in the top three frames and the bottom three frames, respectively. For
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Figure 10. The volume loss ratios, (Vini − V (t))/Vini, are
shown for different cases with f = 16Hz (dot), 25Hz (solid),
and 33Hz (dash) and without pumping (dotted dash) as a
function of time.

a negative net directional flow (Fig. 12), the release period is shown in the top
three frames and the compression period is shown in the bottom three frames.

In Fig. 13, the top and bottom frames show five flow-pressure loops over one
period for a positive (f = 16Hz) and negative net directional flow (f = 33Hz),
respectively. The space-averaged flows (Q) and pressures (P) are measured at
five equispaced locations along the elastic tube at t = 0.5 s, which is during
the transition time before the steady state is reached (see Fig. 9). The red
and blue colors indicate positive and negative flows, respectively. The black
arrow indicates the starting point and direction of the PQ loop. We defined
the signed area in [17] as the area difference between the positive flow (red)
and the negative flow (blue). In the flow-pressure loops at five cross sections
in the top frame of Fig. 13, the sum of the areas surrounded by positive flow
(red) is greater than that of areas surrounded by negative flow (blue). The net
flows and space-averaged signed areas along the tube for positive and negative
directional flows are shown in Table 3. This result shows that the sign of the
net directional flow is the same as that of the signed area, and the magnitude of
the net directional flow is explained by the amount of net power over one cycle
(rate of energy change along the tube over one cycle). This result is consistent
with the result from the open tube system of the VP [17].

5. Summary and conclusions

We have developed a multidimensional model of an open VP system that
consists of an elastic tube connected with two tanks. The elastic tube model is
governed by a two-dimensional full Navier-Stokes system, whereas the system
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Figure 11. Positive net directional flow (f = 16Hz): six
snapshots of the tube boundaries and fluid motions are shown.
The fluid levels in the virtual tanks are shown in each snapshot.
The rectangular box including the elastic tube is a magnified
view and is not the exact size of the computational box.
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Figure 13. The five pressure-flow loops over one period at
t = 0.5 s for a positive (f = 16Hz) and negative (f = 33Hz)
net directional flow are shown in the top and bottom frame,
respectively. From the transient time 0.5 s, 100 points over one
pumping cycle are shown. The red points indicate positive flux
and the blue points, negative flux. The black arrow indicates
the direction of the loop at the starting point.

Table 3. The height difference and the net signed area

Frequency HR −HL Net signed area

f = 16Hz (positive case) 8.066 cm 8.7859× 105

f = 33Hz (negative case) −6.637 cm −3.6551× 104

of ODE for the open tanks is constructed by applying the energy principle to
a single fluid parcel under gravity.

A volume-conserved IB method is employed for solving the elastic tube,
and the Runge-Kutta-Fehlberg method is used for solving the ODE model for
tanks. We have modified the algorithm that was developed for solving the
heart model in the whole circulatory system in [16]. The fluid solver is the
same; the critical point is how it is combined with the ODE system. Toward
this end, based on the work-energy principle under gravity, the fluid in a tank
is viewed as a single parcel, and then, the resultant ODE is derived instead of
using the compartment model for the closed circulatory system in [13]. Using
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the pressure-flow relationship and the linearity of the discretized Navier-Stokes
equations, the ODE model can successfully be merged into the PDE system.

Using the combined IB model, the relevant fluid dynamics was investigated
by the oscillatory periodic compress-release actions that were applied to the
second quarter of the soft part of the tube. A net directional flow is defined
by a flow causing a height difference between the two tanks after the periodic
steady-state is reached. This concept of net directional flow corresponds to a
net flow in a closed VP system. The main feature of this study is that we can
observe a net directional flow in our open VP system as observed in previous
studies on closed and open VP systems. We have also shown that the pumping
frequency and compression duration are important factors for determining the
direction and magnitude of a net directional flow. Relatively, the large height
difference between two tanks is observed near half the compression duration of
pumping in our model setting. The location and width of the pumping region
are also important factors in VP systems. In our simulations, four different
locations of the pumping source in a fixed length are considered. The height
difference between two tanks as a function of frequency is investigated at four
pumping locations. This result indicates that there is no consistency among
the four curves, and an efficient net directional flow can be obtained by chang-
ing the pumping location if the width of the pumping region is fixed. Next,
we change the width of the pumping region with a fixed center of pumping.
We showed that the peaks of the height difference between the two tanks are
maintained at similar frequencies, although the pumping width changes. The
longer the pumping width, the larger is the obtained net directional flow. To
investigate the flow configuration and wall motions of the elastic tube in detail,
the following three cases are chosen: a positive peak (f = 16Hz), an almost
zero (f = 25Hz), and a negative peak (f = 33Hz) net directional flow from
among the results shown in Fig. 4. Almost periodic oscillatory motions having
level differences are observed in all three cases. and tube wall including the
height differences in the two tanks.

To the best of our knowledge, ours is the first study to simulate a multidi-
mensional model in an open tank VP system. We can extend this model to
ones with more tanks to investigate the effect of the number of tanks or the
size of tanks on the VP system. We can also extend our model to a three and
zero-dimensional multiscale model, in order to investigate realistic phenomena
of the fluid-structure interaction. Our developed algorithm can be applied to
other problems including the fluid-structure interaction model with either a
closed or an open ODE system.
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