• 제목/요약/키워드: Imbalanced data

검색결과 151건 처리시간 0.036초

A Statistical Perspective of Neural Networks for Imbalanced Data Problems

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제7권3호
    • /
    • pp.1-5
    • /
    • 2011
  • It has been an interesting challenge to find a good classifier for imbalanced data, since it is pervasive but a difficult problem to solve. However, classifiers developed with the assumption of well-balanced class distributions show poor classification performance for the imbalanced data. Among many approaches to the imbalanced data problems, the algorithmic level approach is attractive because it can be applied to the other approaches such as data level or ensemble approaches. Especially, the error back-propagation algorithm using the target node method, which can change the amount of weight-updating with regards to the target node of each class, attains good performances in the imbalanced data problems. In this paper, we analyze the relationship between two optimal outputs of neural network classifier trained with the target node method. Also, the optimal relationship is compared with those of the other error function methods such as mean-squared error and the n-th order extension of cross-entropy error. The analyses are verified through simulations on a thyroid data set.

Heterogeneous Ensemble of Classifiers from Under-Sampled and Over-Sampled Data for Imbalanced Data

  • Kang, Dae-Ki;Han, Min-gyu
    • International journal of advanced smart convergence
    • /
    • 제8권1호
    • /
    • pp.75-81
    • /
    • 2019
  • Data imbalance problem is common and causes serious problem in machine learning process. Sampling is one of the effective methods for solving data imbalance problem. Over-sampling increases the number of instances, so when over-sampling is applied in imbalanced data, it is applied to minority instances. Under-sampling reduces instances, which usually is performed on majority data. We apply under-sampling and over-sampling to imbalanced data and generate sampled data sets. From the generated data sets from sampling and original data set, we construct a heterogeneous ensemble of classifiers. We apply five different algorithms to the heterogeneous ensemble. Experimental results on an intrusion detection dataset as an imbalanced datasets show that our approach shows effective results.

Re-SSS: Rebalancing Imbalanced Data Using Safe Sample Screening

  • Shi, Hongbo;Chen, Xin;Guo, Min
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.89-106
    • /
    • 2021
  • Different samples can have different effects on learning support vector machine (SVM) classifiers. To rebalance an imbalanced dataset, it is reasonable to reduce non-informative samples and add informative samples for learning classifiers. Safe sample screening can identify a part of non-informative samples and retain informative samples. This study developed a resampling algorithm for Rebalancing imbalanced data using Safe Sample Screening (Re-SSS), which is composed of selecting Informative Samples (Re-SSS-IS) and rebalancing via a Weighted SMOTE (Re-SSS-WSMOTE). The Re-SSS-IS selects informative samples from the majority class, and determines a suitable regularization parameter for SVM, while the Re-SSS-WSMOTE generates informative minority samples. Both Re-SSS-IS and Re-SSS-WSMOTE are based on safe sampling screening. The experimental results show that Re-SSS can effectively improve the classification performance of imbalanced classification problems.

Improving the Error Back-Propagation Algorithm for Imbalanced Data Sets

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제8권2호
    • /
    • pp.7-12
    • /
    • 2012
  • Imbalanced data sets are difficult to be classified since most classifiers are developed based on the assumption that class distributions are well-balanced. In order to improve the error back-propagation algorithm for the classification of imbalanced data sets, a new error function is proposed. The error function controls weight-updating with regards to the classes in which the training samples are. This has the effect that samples in the minority class have a greater chance to be classified but samples in the majority class have a less chance to be classified. The proposed method is compared with the two-phase, threshold-moving, and target node methods through simulations in a mammography data set and the proposed method attains the best results.

데이터 전처리와 앙상블 기법을 통한 불균형 데이터의 분류모형 비교 연구 (A Comparison of Ensemble Methods Combining Resampling Techniques for Class Imbalanced Data)

  • 이희재;이성임
    • 응용통계연구
    • /
    • 제27권3호
    • /
    • pp.357-371
    • /
    • 2014
  • 최근 들어 데이터 마이닝의 분류문제에 있어 목표변수의 불균형 문제가 많은 관심을 받고 있다. 이러한 문제를 해결하기 위해, 이전 연구들은 원 자료에 대하여 데이터 전처리 과정을 실시했는데, 전처리 과정에는 목표변수의 다수계급을 소수계급의 비율에 맞게 조정하는 과소표집법, 소수계급을 복원추출하여 다수계급의 비율에 맞게 조정하는 과대표집법, 소수계급에 K-최근접 이웃 방법 등을 활용하여 과대표집법을 적용 후 다수계급에는 과소표집법을 적용한 하이브리드 기법 등이 있다. 또한 앙상블 기법도 이러한 불균형 데이터의 분류 성능을 높일 수 있다고 알려져 있어, 본 논문에서는 데이터의 전처리 과정과 앙상블 기법을 함께 고려한 여러 모형들을 사용하여, 불균형 자료에 대한 이들모형의 분류성능을 비교평가한다.

Classification for Imbalanced Breast Cancer Dataset Using Resampling Methods

  • Hana Babiker, Nassar
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.89-95
    • /
    • 2023
  • Analyzing breast cancer patient files is becoming an exciting area of medical information analysis, especially with the increasing number of patient files. In this paper, breast cancer data is collected from Khartoum state hospital, and the dataset is classified into recurrence and no recurrence. The data is imbalanced, meaning that one of the two classes have more sample than the other. Many pre-processing techniques are applied to classify this imbalanced data, resampling, attribute selection, and handling missing values, and then different classifiers models are built. In the first experiment, five classifiers (ANN, REP TREE, SVM, and J48) are used, and in the second experiment, meta-learning algorithms (Bagging, Boosting, and Random subspace). Finally, the ensemble model is used. The best result was obtained from the ensemble model (Boosting with J48) with the highest accuracy 95.2797% among all the algorithms, followed by Bagging with J48(90.559%) and random subspace with J48(84.2657%). The breast cancer imbalanced dataset was classified into recurrence, and no recurrence with different classified algorithms and the best result was obtained from the ensemble model.

Imbalanced SVM-Based Anomaly Detection Algorithm for Imbalanced Training Datasets

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • ETRI Journal
    • /
    • 제39권5호
    • /
    • pp.621-631
    • /
    • 2017
  • Abnormal samples are usually difficult to obtain in production systems, resulting in imbalanced training sample sets. Namely, the number of positive samples is far less than the number of negative samples. Traditional Support Vector Machine (SVM)-based anomaly detection algorithms perform poorly for highly imbalanced datasets: the learned classification hyperplane skews toward the positive samples, resulting in a high false-negative rate. This article proposes a new imbalanced SVM (termed ImSVM)-based anomaly detection algorithm, which assigns a different weight for each positive support vector in the decision function. ImSVM adjusts the learned classification hyperplane to make the decision function achieve a maximum GMean measure value on the dataset. The above problem is converted into an unconstrained optimization problem to search the optimal weight vector. Experiments are carried out on both Cloud datasets and Knowledge Discovery and Data Mining datasets to evaluate ImSVM. Highly imbalanced training sample sets are constructed. The experimental results show that ImSVM outperforms over-sampling techniques and several existing imbalanced SVM-based techniques.

A Novel Feature Selection Method in the Categorization of Imbalanced Textual Data

  • Pouramini, Jafar;Minaei-Bidgoli, Behrouze;Esmaeili, Mahdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3725-3748
    • /
    • 2018
  • Text data distribution is often imbalanced. Imbalanced data is one of the challenges in text classification, as it leads to the loss of performance of classifiers. Many studies have been conducted so far in this regard. The proposed solutions are divided into several general categories, include sampling-based and algorithm-based methods. In recent studies, feature selection has also been considered as one of the solutions for the imbalance problem. In this paper, a novel one-sided feature selection known as probabilistic feature selection (PFS) was presented for imbalanced text classification. The PFS is a probabilistic method that is calculated using feature distribution. Compared to the similar methods, the PFS has more parameters. In order to evaluate the performance of the proposed method, the feature selection methods including Gini, MI, FAST and DFS were implemented. To assess the proposed method, the decision tree classifications such as C4.5 and Naive Bayes were used. The results of tests on Reuters-21875 and WebKB figures per F-measure suggested that the proposed feature selection has significantly improved the performance of the classifiers.

Experimental Analysis of Equilibrization in Binary Classification for Non-Image Imbalanced Data Using Wasserstein GAN

  • Wang, Zhi-Yong;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권4호
    • /
    • pp.37-42
    • /
    • 2019
  • In this paper, we explore the details of three classic data augmentation methods and two generative model based oversampling methods. The three classic data augmentation methods are random sampling (RANDOM), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive Synthetic Sampling (ADASYN). The two generative model based oversampling methods are Conditional Generative Adversarial Network (CGAN) and Wasserstein Generative Adversarial Network (WGAN). In imbalanced data, the whole instances are divided into majority class and minority class, where majority class occupies most of the instances in the training set and minority class only includes a few instances. Generative models have their own advantages when they are used to generate more plausible samples referring to the distribution of the minority class. We also adopt CGAN to compare the data augmentation performance with other methods. The experimental results show that WGAN-based oversampling technique is more stable than other approaches (RANDOM, SMOTE, ADASYN and CGAN) even with the very limited training datasets. However, when the imbalanced ratio is too small, generative model based approaches cannot achieve satisfying performance than the conventional data augmentation techniques. These results suggest us one of future research directions.

다층퍼셉트론에 의한 불균현 데이터의 학습 방법 (Classification of Imbalanced Data Using Multilayer Perceptrons)

  • 오상훈
    • 한국콘텐츠학회논문지
    • /
    • 제9권7호
    • /
    • pp.141-148
    • /
    • 2009
  • 최근에 클래스 분포의 불균형이 심한 데이터의 학습 문제가 그 중요도에 비하여 만족할만한 성능을 얻기 어려운 관계로 관심이 고조되고 있다. 이 문제에 대한 접근 방법은 데이터 레벨의 불균형 해소, 알고리즘 레벨에서의 비용함수 도입, 인식기의 앙상블에 의한 성능향상 등으로 분류된다. 이 논문은 알고리즘 레벨의 접근 방법으로써, 다층퍼셉트론 신경회로망에 고차의 오차함수를 사용하여 불균형 데이터를 학습하는 방법을 제시한다. 즉, 소수클래스의 학습을 강화시키고 다수 클래스의 학습을 약화시키는 형태로 가 중치를 변경시킨다. 클래스 불균형이 심한 유방암 검사와 갑상선 진단 데이터의 학습을 통하여 제안한 방법이 MSE(mean-squaerd error), 2단계 방법 및 문턱조정 방법보다 우수함을 확인한다.