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Abnormal samples are usually difficult to obtain in
production systems, resulting in imbalanced training
sample sets. Namely, the number of positive samples is
far less than the number of negative samples.
Traditional Support Vector Machine (SVM)-based
anomaly detection algorithms perform poorly for
highly imbalanced datasets: the learned classification
hyperplane skews toward the positive samples,
resulting in a high false-negative rate. This article
proposes a new imbalanced SVM (termed ImSVM)-
based anomaly detection algorithm, which assigns a
different weight for each positive support vector in the
decision function. ImSVM adjusts the learned
classification hyperplane to make the decision function
achieve a maximum GMean measure value on the
dataset. The above problem is converted into an
unconstrained optimization problem to search the
optimal weight vector. Experiments are carried out on
both Cloud datasets and Knowledge Discovery and
Data Mining datasets to evaluate ImSVM. Highly
imbalanced training sample sets are constructed. The
experimental results show that ImSVM outperforms
over-sampling techniques and several existing
imbalanced SVM-based techniques.

Keywords: Anomaly detection, Decision function,
GMean, Imbalanced training sample set, Support
vector machine (SVM).

I. Introduction

In order to effectively represent the state of an observed
production system, many state variables (referred to as
performance metrics) are measured and collected. A
vector containing the sampling values of all these
variables at one point in time forms a sample of the
observed system. Anomaly detection is a function that
detects abnormal states characterized by samples of an
observed system.
In production systems, it is usually easy to collect

normal samples (that is, negative samples). However,
although abnormal samples (that is, anomalies or positive
samples) occur frequently, their frequency is still far less
than that of normal samples. Consequently, abnormal
samples usually are not easy to collect. In addition, for a
newly deployed production system, the training dataset
merely includes normal samples initially. Along with
abnormal samples being detected and sent to human
operators for confirmation, the detection system gradually
accumulates some abnormal samples. In these cases, the
number of abnormal samples is far less than that of normal
samples in the training sample set.
The former class of samples is usually called the

minority class, while the latter is called the majority class.
For example, abnormal samples account for < 5%. Such a
sample set is often called an imbalanced dataset. When
training a model for anomaly detection, one challenge is to
cope with imbalanced training datasets.
Classification techniques based on Support Vector

Machine (SVM) are widely adopted in domains such as
anomaly detection [1]. However, traditional SVM-based
anomaly detection techniques perform poorly for
imbalanced datasets. The underlying reason is that the
decision function obtained in SVM is determined only by
the positive and negative support vectors. Since the
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number of positive support vectors is also far less than that
of negative support vectors for a highly imbalanced
training set, SVM tends to learn a classification
hyperplane that is too close to and skewed toward the
positive samples (as detailed in Section IV). Thus, it is
easier to misclassify positive samples as negative ones
(that is, false negatives) and achieve a high false-negative
rate. Moreover, the consequence of misclassifying a
positive sample is usually more serious; for example,
falsely classifying a true anomaly as a normal state may
bring disastrous consequences.
To this end, this article proposes a new imbalanced

SVM (ImSVM)-based anomaly detection algorithm.
ImSVM assigns a different weight for each positive
support vector in the decision function obtained by
traditional SVM, and adjusts the learned original
classification hyperplane to make the decision function
achieve a maximum GMean measure value on the dataset.
The optimal weight vector is solved through an
unconstrained optimization problem. A series of
experiments are carried out on both Cloud datasets and
Knowledge Discovery and Data Mining (KDD) datasets to
evaluate ImSVM. Highly imbalanced training sample sets
are constructed. The experimental results show that
ImSVM outperforms over-sampling techniques and
several existing imbalanced SVM-based techniques.

II. Related Work

Anomaly detection [1] is an important research problem
that has been widely studied within various research areas
and application domains, including intrusion detection for
network security [2], [3], fraud detection of credit card
transactions [4], and fault diagnosis for distributed
systems [5]. Chandola and others [1] survey the literature
in the anomaly detection domain. They provide an
extensive overview on the research in the literature.
Support Vector Machine-based algorithms are widely

adopted in anomaly detection. Fu and others [6] put
forward a self-evolving framework for anomaly
detection to enhance the dependability of Cloud
computing platforms. This framework combines two
SVMs (that is, one-class, and two-class). Through
experiments they verify that SVM starts to perform
reasonably well on imbalanced datasets once the
percentage of abnormal samples reaches 10%.
Note that, this article focuses only on binary

classification. In an imbalanced training sample set, since
the number of positive samples (abnormal samples) is far
less than that of negative samples (normal samples), the
class of positive samples is also referred to as the minority

class, while the class of negative samples is referred to as
the majority class.
The framework proposed in [6] solves the problem of

imbalanced datasets by switching between two SVMs.
However, since both of these SVMs perform poorly when
the proportion of abnormal samples is < 10%, the
framework essentially does not solve the problem.
The techniques presented in the literature to solve the

challenge of imbalanced training sample sets can be
divided into two categories: reconstructing the sample sets
and improving the detection algorithms.
The first category of techniques reduces the imbalance

between samples of different classes through under-
sampling or over-sampling techniques. Under-sampling
techniques remove samples from the majority class to
balance the dataset. The main defect of under-sampling is
that it may remove potentially useful data and reduce the
size of the training sample set [4]. Over-sampling
techniques balance the dataset through replicating or
synthesizing the samples of the minority class. Despite not
losing any data, over-sampling may introduce noisy
artificial samples, lead to over-fitting, as well as introduce
additional computational cost [4], [7].
The synthetic minority over-sampling technique

(SMOTE) [8] is a typical over-sampling technique.
SMOTE selects a sample (denoted as x) from the minority
class and computes x’s K-nearest neighbors. Then,
SMOTE randomly selects a neighbor (denoted as x1) and
synthesizes a sample randomly lying in the line segment
between x and x1 as a new synthetic sample. Yang and
others [9] improve SMOTE by adaptively excluding some
neighbors far away from x, and propose Adaptive SMOTE
(ASMOTE). Castro and others [10] combine under-
sampling and over-sampling techniques to reduce the
imbalance in the dataset by first removing noisy examples
of the majority class, and then generating new synthetic
examples of the minority class.
The second category of techniques adopts certain

methods to improve the classifiers in order to make the
detection models more advantageous to the
classification of the minority class. These methods
include adjusting the cost function of each class of
samples, one-class classification, and adjusting the
classification boundary.
Imam and others [11] propose an extended SVM,

z-SVM, for imbalanced datasets. z-SVM assigns the same
weight to each positive support vector in the decision
function. z-SVM orients the trained decision boundary of
SVM to maintain a good margin between the decision
boundary and each class of samples. However, since the
position, role, and significance of each support vector is
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different, assigning the same weight to each positive
support vector cannot achieve the desired effect in
improving SVM, which is confirmed in Section V. Yang
and others [12] propose an extended SVM, lSVM, which
is similar to z-SVM.
Introducing different misclassification cost for each

class of samples is another kind of important technique for
imbalanced datasets, which derives cost-sensitive SVM
[13]. However, it is usually difficult (lack of defined
strategy or guidelines) to determine the precise
misclassification cost for each class of samples in practice.
Along with the advent of advanced machine learning

techniques, these techniques are also introduced into SVM
to deal with imbalanced sample sets, including scaling
kernel-based SVM [14], [15] and ensemble learning of
SVM [16]. However, it is usually difficult to implement
these techniques. Therefore, this article will not discuss
these techniques.
Some research combined these two categories of

techniques to cope with imbalanced datasets. For example,
Akbani and others [17] combine a variant of SMOTE
algorithm (that is, over-sampling) by using different
penalty constants for different classes of samples (that is,
cost-sensitive SVM).
In addition, since the common evaluation measures (for

example, false negative rate, false positive rate, and
accuracy rate) are not applicable for evaluating the
performance of anomaly detection algorithms on
imbalanced datasets, some measures including F1-measure
[15], GMean [11], [18] are introduced in the literature.
Compared with the research in the literature [8], [9],

[11], [13] this article proposes a relatively simple but
powerful imbalanced SVM (ImSVM)-based anomaly
detection algorithm to cope with imbalanced datasets.

III. Preliminaries

1. Anomaly Detection Algorithm Based on C-SVM

Notations: a lowercase letter in italic format (b)
indicates a scalar; a lowercase letter in italic and bold
format (x) indicates a vector; in addition, the vectors are
all column ones. Note that, a vector in Hilbert space ðHÞ
is represented by a bold and non-italic lowercase letter (x).
SVM [19] is essentially a supervised learning technique.

It is widely used in classification [20], regression [21], and
other techniques. This article only focuses on anomaly
detection problems (that is, classification).
In essence, SVM is a model for binary classification.

SVM learns a linear classifier (that is, a classification
hyperplane, (w�x) + b = 0) with a maximum margin

between two support hyperplanes in Euclidean space, as
shown in Fig. 1(a). By introducing kernel methods and
learning a linear classifier in Hilbert space (H), SVM can
also implement nonlinear classification in Euclidean
space, Rn. Maximizing the margin is formalized as a
convex quadratic programming problem.
If the training dataset can be separated linearly, as

illustrated in Fig. 1(a), a linear classifier (that is, a
hyperplane) can be learned by maximizing the hard
margin, which is formalized as 2=kwk. Further,
maximizing 2=kwk is equivalent to minimizing kwk2=2.
The obtained linear classifier is referred to as a linear
separable SVM, which is also called an SVM with a hard
margin.
If the training dataset is linearly separable except for

some outliers (that is, approximately linearly separable),
as illustrated in Fig. 1(b), a linear classifier can also be
learned by introducing the slack variables ξi and
maximizing the soft margin. The obtained linear classifier
is referred to as a linear SVM, which is also called an
SVM with soft margin.
If the training dataset cannot be linearly separated in

Euclidean space, by applying kernel methods it is possible
to map the input space x 2 Rn to a Hilbert space x 2 H and
learn a linear SVM in Hilbert space, as shown in Figs. 1(c)
and 1(d). Note that, the map function is denoted as Φ. More
important, a linear SVM (a hyperplane) in Hilbert space
is equivalent to a nonlinear SVM (a hypersurface) in
Euclidean space. By applying kernel methods, the basic
operations of inner products in SVM are converted into
simply computing the kernel function directly without
knowing the map function. Namely, the operation process
does not need to really map the samples intoH space.
The basic standard form of SVM is C-SVM [22]. The

prefix “C-” introduces the penalty parameter C, which is a
trade-off between two conflicting goals: maximization of
margin and minimization of the training error. The primal
optimization problem of C-SVM is

min
w;b;n

1
2
kwk2 þ C

Xl

i¼1

ni; (1)

s.t. yiððw � xiÞ þ bÞ� 1� ni; i ¼ 1; 2; . . . ; l; (2)

ni � 0; i ¼ 1; 2; . . . ; l; (3)

where {(xi, yi)} is the training dataset, i = 1, 2, . . . , l; l is
the number of samples in the dataset; w is the normal
vector of the classification hyperplane, b (scalar) is the
corresponding bias, and ξi are slack variables that indicate
how far a particular sample is from its correct side of the
support hyperplane.
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By applying Lagrange duality and introducing kernel
methods, the following dual optimization problem is
obtained:

min
a

1
2

Xl

i¼1

Xl

j¼1

yiyjaiajKðxi; xjÞ �
Xl

j¼1

aj; (4)

s.t.
Xl

i¼1

yiai ¼ 0; (5)

0� ai �C; i ¼ 1; 2; . . . ; l; (6)

where K(�, �) is the kernel function associated with Φ, and
a = (a1, a2, . . . , al)

T is the Lagrange multiplier vector
that needs to be solved, where the component ai is the
Lagrange multiplier associated with the sample (xi, yi).
The basic idea of the anomaly detection algorithm based

on C-SVM is to learn a classifier, and then classify a new
sample as normal or abnormal. The steps of this algorithm
are detailed as follows.
Algorithm 1 The anomaly detection algorithm based on
C-SVM
Input: the training dataset T = {(x1, y1), (x2, y2), . . . ,
(xl, yl)}, where xi 2 Rn; yi 2 Y ¼ f1;�1g is the label
associated with xi, i = 1, 2, . . . , l; the newly collected
sample, xnew.
Output: the solved decision function f(x) and the label
ynew related to xnew.
Step 1: Choose an appropriate kernel K(x, x0) (usually a
Gaussian kernel function is chosen), and choose a penalty
parameter C > 0.
Step 2: Construct the convex quadratic programming
problem using (4)–(6), solve the problem, and obtain a
solution.

a� ¼ ½a�1 a�2 � � � a�l �T : (7)

Step 3: Compute the normal vector w* according to the
following equation:

w� ¼
Xl

i¼1

a�i yiUðxiÞ: (8)

Note that, since the map function Φ is usually unknown, it
may be impossible to compute w* directly. Fortunately,
only the decision function is needed generally. Therefore,
the normal vector does not need to be explicitly calculated.
Step 4: Compute b*. Choose a component (denoted as
ðaj*)) of a*, aj* 2 ð0;CÞ; and compute

b� ¼ yj �
Xl

i¼1

yia
�
i Kðxi; xjÞ: (9)

Since the solution of b is not unique, the average value of
all solutions is computed in practice.

(c)

(d)

(a)

(b) Classification
hyperplane

x2

O x1

Outliers

Support hyperplane

Classification
hyperplane

x2

x1

Classification
hyperplane

x2

O x1

Support hyperplane

Positive samples

Negative samples

x2

x1

Classification
hyperplane

Positive samples
in hilbert space

Negative samples
in hilbert space

O

Fig. 1. Basic principles of Support Vector Machine (SVM): (a)
linear separable SVM, (b) linear SVM, (c) linear
inseparable dataset, and (d) linear SVM in Hilbert space
(equivalent to a nonlinear SVM in Euclidean space).
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Step 5: Construct the following decision function

f ðxÞ ¼ sgnðgðxÞÞ; (10)

where

gðxÞ ¼
Xl

i¼1

yia
�
i Kðxi; xÞ þ b�: (11)

Step 6: Compute ynew = f(xnew). If ynew equals to +1, the
new sample xnew is classified as an anomaly (an abnormal
state); otherwise, it is classified as a normal state.
If a component (denoted as ai*) of a* is nonzero, then

the input vector xi associated with (xi, yi) is referred to as a
support vector. Otherwise, xi is a nonsupport vector.

2. Evaluation Measures for Detection Algorithms

For an observed system, an abnormal state detected by
an anomaly detection algorithm is called a positive, while
a detected normal state is called a negative. Combined
with the actual normal or abnormal state of the observed
system, the detection results fall into the following four
categories: False positive (FP), False negative (FN), True
positive (TP), True negative (TN). They constitute the
confusion matrix illustrated in Fig. 2.
This article introduces the following four measures to

evaluate the performance of the anomaly detection
algorithms involved in the experiments:
1) Sensitivity is defined as the ratio of the accurately
detected anomalies (TP) to the actual anomalies (TP and FN).

Sensitivity ¼ TP=ðTP þ FNÞ: (12)

2) Specificity is defined as the ratio of the accurately
detected normal states (TN) to the actual normal states (FP

and TN).

Specificity ¼ TN=ðFP þ TNÞ: (13)

3) Precision is defined as the ratio of the accurately
detected anomalies (TP) to the detected anomalies (TP
and FP).

Precision ¼ TP=ðFP þ TPÞ: (14)

4) F1-Measure is defined as the harmonic mean of
recall (denoted as R) and precision (abbreviated as
P), where recall is just equivalent to sensitivity.
Therefore,

F1 ¼ 2PR=ðP þ RÞ;P ¼ TP=ðTP þ FNÞ: (15)

IV. Proposed IMSVM Algorithm

1. Basic Idea of ImSVM

In the input Euclidean space Rn, the classification
hyperplane obtained in SVM is determined by the normal
vector (w) and the bias (b). It is known from (8) that w is
determined only by support vectors, which is also
illustrated by the following equation:

w ¼
X

xp2SV ;yp[0

apypxp þ
X

xn2SV ;yn\0

anynxn; (16)

where SV is the set of support vectors. The bias b is
determined by (9). Therefore, the obtained decision
function can be expressed as f(x) = sgn(g(x)), where

gðxÞ ¼
X

xp2SV ;yp[0

apypðx � xpÞ

þ
X

xn2SV ;yn\0

anynðx � xnÞ þ b ;
(17)

(x � xp) and (x � xn) represent the inner products of two
samples.
Note that, the above two equations also hold in Hilbert

space, as long as x is replaced with Φ(x), and (x, x0) is
replaced with K(x, x0).
For a newly collected sample xnew, if f(xnew) > 0, then it

is classified as a positive sample; otherwise, it is classified
as a negative sample.
In a highly imbalanced training set, the negative

samples heavily outnumber the positive samples; the
negative support vectors also heavily outnumber the
positive support vectors. Therefore, the negative samples
and the negative vectors dominate in the decision function
(17). Concretely speaking, in the objective function (1) of
SVM, the penalty of the negative samples heavily exceeds
that of the positive samples. Therefore, the obtained
solution tends to maximize the margin between the
negative samples and the classification hyperplane, thus
making SVM tend to learn a classification hyperplane that
is too close to and skewed toward the positive samples
[17], as illustrated in Fig. 3(a).

Anomaly Normal

Actual state

Anomaly

Normal

Detection 
results

True positive
(Tp)(positive)

(negative)

False positive
(Fp)

False negative
(FN)

True negative
(TN)

Fig. 2. Confusion matrix.
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The skewed boundary may enhance the possibility of
misclassifying some positive samples as negative ones
(that is, classifying a true anomaly as a normal state), thus
increasing the false-negative rate. As an illustrative
example, no negative sample is falsely classified in
Fig. 3(a), while two positive samples are falsely classified
as negative ones (false negatives). Moreover, the
consequence of misclassifying positive samples is usually
more serious. Therefore, an intuitional improvement of
SVM is to move the original classification hyperplane to a
more proper position.
Note that, although Fig. 3 takes a linear SVM in

Euclidean space as an illustrative example, the above
conclusions also hold for linear SVMs in Hilbert space,
which is equivalent to nonlinear SVMs in Euclidean space.

The basic idea of ImSVM is that for the original
classification hyperplane solved by C-SVM, ImSVM
adjusts the position of the hyperplane by adjusting the
parameters w and b to make a certain evaluation measure
(usually more applicable for imbalanced datasets) of the
detection model achieve an optimal value on a training
sample set.
As illustrated in Figs. 3(a) and (b), for the original

classification hyperplane (denoted as L) solved by
C-SVM, a new hyperplane (L1) is obtained after
adjusting w; another new hyperplane (L2) is obtained
after adjusting b. Note that, b/||w|| represents the distance
between the origin and the hyperplane. Further, adjusting
b can be implemented by adjusting w. According to (16),
the adjustment of w can be implemented only by
adjusting the weights of the positive support vectors in
(16). Note that, the support vectors lie in different
regions; their roles and significance are also different
[22]. Therefore, each positive support vector in the
decision function should be assigned a different weight,
which results in a new decision function, f(x, k) =
sgn(g(x, k)), where

gðx; kÞ ¼
X

xp2SV ;yp[0

kpapypKðx; xpÞ

þ
X

xn2SV ;yn\0

anynKðx; xnÞ þ b;
(18)

k = [k1 k2 � � � knp]T are parameters to be determined, and
np is the number of support vectors in the minority class.

2. Determination of k

In ImSVM, the principle of determining k is to make the
decision function (18) achieve a maximum GMean value
on a training sample set T = {(x1, y1), (x2, y2),
. . . , (xl, yl)}.
The GMean measure is defined as the geometric mean

of the accuracy rates of positive and negative samples
[11], [18].

GMean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Accþ � Acc�;

p
(19)

where Acc+ = TP/(TP + FN) is the accuracy rate of
positive samples, while ACC– = TN/(TN + FP) is the
accuracy rate of negative samples.
In the expression of GMean, the denominator of Acc+ is

the number of actual positive samples in Tt, while the
denominator of Acc– is the number of actual negative
samples in T. Both these denominators are fixed values.
Therefore, maximizing GMean is equivalent to
maximizing TP 9 TN, while TP and TP can be formalized
as the first and second items of the following

Support
hyperplane

(a)

x2

O

(b)

L1

x1O

x2

x1

L2

L

b

w

w

w

b

Classfication
hyperplane: L

w
Positive samples
Negative samples

Fig. 3. Geometry interpretation of imbalanced Support Vector
Machine (ImSVM): (a) original classification hyperplane
solved by C-SVM skews towards the positive samples
and (b) adjusting the classification hyperplane.

626 ETRI Journal, Vol. 39, No. 5, October 2017

https://doi.org/10.4218/etrij.17.0116.0879



equation respectively, thus obtaining the objective
function for searching the optimal k value.

max
k

JðkÞ ¼
X

ðxi;yiÞ2T ;yi[0

Iðyigðxi; kÞÞ

�
X

ðxi;yiÞ2T ;yi\0

Iðyigðxi; kÞÞ;
(20)

where I(u) is an indicator function defined as

IðuÞ ¼ 1; u� 0
0; u\0.

�
(21)

To be concrete, the first term in (20) calculates the number
of correctly classified positive samples (TP), while the
second one calculates the number of correctly classified
negative samples (TN).
Equation (20) is an unconstrained optimization

problem: the number of variables just equals to the
number of positive support vectors, that is, np. The value
of np is usually small. This optimization problem can be
solved by the gradient descent method or Newton method
[23].
After obtaining the optimal solution, k*, it can be

substituted into g(x, k), thus obtaining a new decision
function, f(x, k*) = sgn(g(x, k*)). The detection model
represented by this new decision function is just the
anomaly detection model produced by ImSVM.

3. Proposed ImSVM-Based Anomaly Detection
Algorithm

The first key step in ImSVM is to solve the original
classification hyperplane by using C-SVM-based anomaly
detection algorithm (Algorithm 1). The second key step is
to adjust the hyperplane, which is finally converted into an
unconstrained optimization problem to search the optimal
weight vector k*.
The ImSVM algorithm is detailed in the following

steps:
Algorithm 2 Anomaly detection algorithm based on
ImSVM
Input: the training dataset T = {(x1, y1), (x2, y2), . . . ,
(xl, yl)}, where xi 2 Rn; yi 2 Y ¼ f1;�1g, i, i = 1, 2, . . . ,
l; the newly collected sample, xnew.
Output: the optimal weight vector k*, the solved decision
function f(x, k*), and the label ynew related to xnew.
Step 1: Learn a detection model on T by C-SVM, and
obtain a decision function and the original classification
hyperplane represented by (w, b); obtain the set of support
vectors SV.

Step 2: Solve the unconstrained optimization problem (20)
on the training sample set; take the k value when J(k) is
maximum as the optimal solution k*.
Step 3: Substitute k* into (18), and obtain a new decision
function f(x, k*), and a new classification hyperplane
represented by (w, b, k*).
Step 4: Compute ynew = f(xnew, k*) if the obtained label
ynew = +1, xnew, is classified as an anomaly. Otherwise,
(ynew = �1), xnew, is classified as a normal state.

V. Experiments and Analyses

1. Datasets Adopted in Experiments

A. Cloud Datasets

This article collects samples from an institute-wide
Cloud platform, as illustrated in Fig. 4. The Cloud
platform consists of 60 physical computing nodes, which
are grouped into several clusters. A total of 0–4 VMs are
deployed on each node. This number is dynamically
changed according to the deployment assigned by the
management server. Each sample contains 53 performance
metrics, which indicate the heath state of a virtual machine
(VM). These 53 performance metrics fall into the
following categories: computation, storage, disk I/O,
process, and network.

Internet

VMM

Hardware

OS
VMM

Dom0

Hardware

Detection System

Detection 
Management 

Server

Host 

Host 

Host 

Host 

Cluster N

VLAN

Monitoring 
Host

Monitoring 
Host

LAN Hardware

Resource 
Manage-

ment

Clients

Cloud Platform

Cluster
Manage-

ment

Tenant 
Manage
-ment

Host 

Host 

Host 

Host 

Cluster 1

VLAN

Moni-
tor

OS

Detection VMs
Moni-

tor

OS

OS

VM

App

OS

VM

App

OS

Dom0

Cloud 
Management 

Node

OS

Fig. 4. Topological structure of an institute-wide Cloud
platform.
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The detection system learns a detection model from the
training sample set and classifies a new sample as normal
or abnormal. A Cloud dataset contains both normal and
abnormal samples (anomalies). The anomalies may be
abnormal consumption of computation resources,
abnormal consumption of memory resources, abnormal
disk I/O operation, or abnormal network access. The
anomalies are confirmed by human operators.

B. KDD Datasets

The benchmark dataset, KDD dataset [24], is issued by
the 5th Knowledge Discovery and Data Mining (KDD)
Conference. It is derived from a dataset released by MIT
Lincoln Laboratory [25]. This dataset simulates various
intrusions (including DOS, Probe, U2R, and R2L), which
are collected from an actual military network. It contains
both a training sample set and a test one. The former
includes 4,898,431 connection records (network traffic
lasting for 7 weeks). The latter includes 2,984,154
connection records (network traffic lasting for 2 weeks).
Each sample is associated with a label indicating either a
normal connection or an attack.

2. Experiments

This article compares ImSVM with four other
techniques for imbalanced datasets: C-SVM [22],
ASMOTE [9] plus SVM, z-SVM [11], and cost-sensitive
SVM [13].
Parameter setting:

1) C-SVM: C 2 [2�8, 2+8]; Gaussian Radial Basis kernel
function, K(x1, x2) = exp(�c ‖x1 � x2‖

2), is adopted; the
optimal parameters, C and c, are solved by a 2D grid
search method. Note that, the same parameter setting is
adopted in the following SVMs.
2) ASMOTE plus SVM: the most important parameter,
the percentage of over-sampling (or over-sampling rate), is
set as 100% to balance the dataset.
3) z-SVM: the initial value of z is z0 = 1; the optimal
solution, z*, is solved by a Golden section search
algorithm.
4) Cost-sensitive SVM: the misclassification cost ratio r is
defined as the ratio of the cost of false negative to that of
false positive; the initial value is r0 = 1; the optimal ratio
r* is solved by the method presented in [13].
5) ImSVM: the initial value of k is k0 = (1, 1, . . . ,)T, the
optimal solution k* is solved by a gradient descent
method.
For the Cloud dataset, this article first constructs a

training dataset that contains 5,000 samples. Abnormal

samples account for only 1% (50 samples are abnormal
ones). The involved five techniques train their respective
detection models on this training dataset. Then, this article
constructs a testing dataset that includes 2,000 samples.
These five detection models are evaluated on the testing
dataset. Table 1 lists the detection results. Table 2 lists the
evaluation measures that are calculated by (12)–(15).
The following four conclusions are derived from the

above experimental results:
1) C-SVM performs the worst. Specifically, the number of
false negatives (FN) in C-SVM is the highest, which
produces low sensitivity. The underlying reason is that the
learned original classification hyperplane is too close to
and skewed toward the positive samples, which makes it is
more possible to misclassify an anomaly as a normal state
(false negative). The constructed Cloud dataset is a highly
imbalanced dataset (abnormal samples account for only
1%). Therefore, the defect of C-SVM is evidently
exposed.
2) z-SVM performs better than ASMOTE plus SVM. The
main reason is that SMOTE may generate noisy artificial
samples, thus causing a high rate of false alarms (false
positives). As shown in Table 1, ASMOTE plus SVM
causes three more false positives compared with z-SVM.
Another reason is that the performance of ASMOTE is
highly dependent on the proper determination of the
percentage of over-sampling. If this parameter is set as
a high value, too many noisy artificial samples are
introduced. By contrast, a low value does not substantially
improve the imbalance between samples of different
classes. No defined guideline is reported to solve an
optimal value.
3) Cost-sensitive SVM does not achieve the desired
performance on the Cloud dataset. The underlying reason
is that the performance of cost-sensitive SVM is highly
dependent on the precise misclassification cost for each
class of samples. Unfortunately, a defined guideline is
lacking. Usually, empirical knowledge and an exhaustive
search are needed to solve for the optimal costs.
4) ImSVM outperforms the other four algorithms in terms
of all the four evaluation measures. Specifically, by

Table 1. Detection results on cloud datasets.

Algorithm TP FP FN TN

C-SVM 927 61 78 934

ASMOTE + SVM 938 57 67 938

z-SVM 946 54 59 941

Cost-sensitive
SVM

954 51 51 944

ImSVM 961 47 44 948
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rectifying the skewness of the original classification
hyperplane toward the positive samples, the number of
false negatives (FN) in ImSVM is evidently reduced, thus
enhancing the sensitivity. In addition, ImSVM does not
simply translate the classification hyperplane toward the
negative samples. In fact, it moves the classification
hyperplane to a more proper position to maximize the
GMean value on the training sample set. Therefore, the
number of false positives (FP) is also reduced at the same
time, as shown in Table 1.
In addition, ImSVM performs well when the training

sample set is highly imbalanced. In order to test the
performance of these five techniques under datasets with
different degrees of imbalance, a series of experiments are
conducted where the percentage of positive samples in the
training sample set is controlled as 5%, 10%, and 20%.
A variation plot of a chosen evaluation measure
(F1-Measure) with the percentage of positive samples is
given in Fig. 5.
The variation plot shows that the advantage of ImSVM

compared with the other four algorithms is gradually
weakened along with a decrease in the imbalance between
samples of different classes. When the percentage of
positive samples in the training sample set increases from
1% to 20%, the performances of all five algorithms
increase, as shown in Fig. 5. This is because when the
percentage of positive samples increases, the dominance
of the penalty (in the objective function of SVM) of the
negative samples decreases. When the positive samples
account for 20%, no significant performance difference
exists among these five algorithms. The underlying reason
is that these five algorithms are all based on SVMs. When
the percentage of positive samples is increased to 20%,
SVM starts to perform reasonably well on the dataset.
Therefore, the improvement of either ImSVM, ASMOTE,
z-SVM, or cost-sensitive SVM, plays a minor role
compared with standard C-SVM.
For the KDD dataset, this article constructs a training

dataset containing 20,000 samples. Similarly, abnormal

samples account for only 1%. Then, this article constructs a
testing dataset that includes 5,000 samples. Table 3 lists the
detection results. Table 4 lists the evaluation measures.

Table 2. Evaluation measures on cloud datasets.

Algorithm Sensitivity Specificity Precision
F1-

Measure

C-SVM 0.922 0.939 0.938 0.930

ASMOTE +
SVM

0.933 0.943 0.943 0.938

z-SVM 0.941 0.946 0.946 0.944

Cost-sensitive
SVM

0.949 0.949 0.949 0.949

ImSVM 0.956 0.953 0.953 0.955

1% 5% 10% 20%
Percentage of positive samples

C-SVM
ASMOTE + SVM
z-SVM
Cost-sensitive SVM
ImSVM

F 1
-M

ea
su

re

0.965
0.960
0.955
0.950
0.945
0.940
0.935
0.930
0.925

Fig. 5. Variation plot of F1-Measure with the percentage of
positive samples in the training sample set (Cloud
datasets).

Table 3. Detection results on KDD cup datasets.

Algorithm TP FP FN TN

C-SVM 2,299 168 203 2,330

ASMOTE + SVM 2,325 160 177 2,338

z-SVM 2,348 153 154 2,345

Cost-sensitive
SVM

2,365 149 137 2,349

ImSVM 2,383 141 119 2,357

Table 4. Evaluation measures on KDD Cup datasets.

Algorithm Sensitivity Specificity Precision
F1-

Measure

C-SVM 0.919 0.933 0.932 0.925

ASMOTE +
SVM

0.929 0.936 0.936 0.932

z-SVM 0.938 0.939 0.939 0.939

Cost-sensitive
SVM

0.945 0.940 0.941 0.943

ImSVM 0.952 0.944 0.944 0.948

1% 5% 10% 20%
Percentage of positive samples

C-SVM
ASMOTE + SVM
z-SVM
Cost-sensitive SVM
ImSVM

F 1
- M

ea
su

re

0.960
0.955
0.950
0.945
0.940
0.935
0.930
0.925

Fig. 6. Variation plot of F1-Measure with the percentage of
positive samples in the training sample set (KDD Cup
datasets).
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Similar conclusions can be reached from the
experimental results on the KDD dataset: ImSVM
performs the best among the involved five anomaly
detection techniques; in particular, ImSVM evidently
reduces the FN value and therefore enhances
sensitivity.
For the KDD dataset, the variation plot of the F1-

Measure with the percentage of positive samples is
given in Fig. 6. It is also shown that when the
percentage of positive samples in the training sample
set increases from 1% to 20%, the performances of
all five algorithms increase, but the advantage of
ImSVM compared with the other four algorithms is
gradually weakened.

VI. Conclusion

Aiming at solving imbalanced training datasets in the
anomaly detection domain, this article proposes a new
imbalanced SVM termed ImSVM. ImSVM adjusts the
learned classification hyperplane by assigning a different
weight for each positive support vector in the decision
function. The weight vector is solved until a maximum
GMean measure value is achieved. ImSVM decreases the
possibility of misclassifying some positive samples as
negative ones, thus reducing the false-negative rate and
enhancing sensitivity. This article conducts a series of
experiments on both Cloud and KDD datasets. The results
verify that ImSVM outperforms four other SVM-based
techniques when the training sample set is highly
imbalanced.
This article is confined to binary classification.

ImSVM is expected to be extended to multiclass
anomaly detection. The comparison between ImSVM
in a multiclass situation with other popular multiclass
SVM-based anomaly detection algorithms is expected
in the future.
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