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Abstract

Data imbalance problem is common and causes serious problem in machine learning process. Sampling is 

one of the effective methods for solving data imbalance problem. Over-sampling increases the number of 

instances, so when over-sampling is applied in imbalanced data, it is applied to minority instances. 

Under-sampling reduces instances, which usually is performed on majority data. We apply under-sampling 

and over-sampling to imbalanced data and generate sampled data sets. From the generated data sets from 

sampling and original data set, we construct a heterogeneous ensemble of classifiers. We apply five different 

algorithms to the heterogeneous ensemble. Experimental results on an intrusion detection dataset as an 

imbalanced datasets show that our approach shows effective results.

Keywords: Over-sampling, Under-sampling, Heterogeneous ensemble, Imbalanced data.

1. Introduction

Imbalanced data causes problem in machine learning process [1]. Firstly it gives biased accuracy 

information which is based on counting the number of correctly classified instances from cross-validation. If 

we have 9,999 instances of normal event and 1 instance of abnormal event, then even “always print normal” 

algorithm will have 99.99 % of accuracy. Secondly, it is difficult to maintain reasonable decision boundary 

for minor category. Finally, imbalanced data involved different cost for misclassification which is often 

difficult to estimate. 

Usually three different approaches are adopted for mitigating this problem [2]. The first approach is a

sampling based approach to reduce the majority category by under-sampling [3] or inflate the minority 

category by over-sampling [4]. The second approach is to emphasize minority instances or penalize 

misclassification of minority instances by giving different weights [1]. The third approach is to use 

imbalance-aware machine learning algorithms [2].
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Ensemble methods are known to reduce variances. Well known ensemble methods include bagging [5], 

boosting [6], arcing [7], stacking [8], etc. When we construct an ensemble with classifiers generated from the 

same learner, we call it homogeneous ensemble, and if we construct an ensemble with classifiers generated 

from different classifiers, we call it heterogeneous ensemble [9].

In this paper, we propose a heterogeneous ensemble of classifiers which are created from differently 

sampled datasets. From an imbalanced dataset, we create an under-sampled dataset and an oversampled 

dataset. Together with the original dataset, we perform five different learning algorithms to generate 

different classifiers. From fifteen generated classifiers, made from three different datasets and five different 

learning algorithms, we generate a heterogeneous ensemble. We empirically validate the effectiveness of our 

approach on intrusion detection dataset, which is one of well-known data imbalance problem. 

2. Data imbalance problem

Data imbalance problem arises when there is a huge difference between the number of one category 

instances and the other category instances. Since most learning algorithms try to maximize accuracy and use 

cross-validation or leave-one-out to measure the accuracy, data imbalance can cause misleading results. For 

example, when you have 9,900 normal instances and 100 abnormal instances, using stratified ten-fold 

cross-validation generates 10 data chunks, each of which has 990 normal instanced and 10 abnormal 

instances. And we use nine chunks to “generate” a classifier and use the remaining one chunk to “test” the 

classifier. For each different combination of choosing nine chunks from ten chunks (which is ten), we go 

through the “generate and test” step. Usually cross-validation is reasonable, but, for this imbalanced data, 

since there is a big difference among the instance counts, counting correctly classified and misclassified 

instances can generate misleading accuracy result. That is, even for a dumb classifier that always output 

“normal”, its accuracy is 99.00%. 

Unfortunately, this skewness among the numbers of instances naturally happens in most real-world 

problems. One well known example is in the problems which describe abnormal events, such as surveillance 

application, intrusion detection [10], bankruptcy prediction [2], etc. As aforementioned, there are many 

approaches to solve this problem. 

2.1 Over-sampling

Over-sampling increases the number of instances, so when over-sampling is applied in imbalanced data, it 

is applied to minority instances. If you naively copy an instance into multiple identical instances (aka 

minority over-sampling with replacement [11], it can cause a serious problem. Since most evaluation 

approaches use cross-validation approach, multiple identical instances can be included into training instances 

and test instances. This cause inadvertent information leak, which lets the learner peek some instances in the 

training process. Another problem reported for minority over-sampling with replacement is making minority 

class decision boundary more specific, which causes over-fitting [4].

More refined way to relieve this information leak problem is to sample a new instance from training 

instances in a reasonable way, so that we believe the new instance is probably from the same distribution of 

the original training instances. One widely used sampling technique for this purpose is Synthetic Minority 

Over-sampling Technique (SMOTE) algorithm [4]. In SMOTE, to create a new instance, expressed in terms 

of a feature vector, by taking majority vote of a certain training instance and its k neighbors. For example, let 

a certain training instance X1=(A,B,C,D,E,1.0) and its two neighbors as X2=(A,I,C,J,G,1.5) and 

X3=(A,B,H,J,F,1.1). Note that the sixth attribute is a numeric attribute. Then, SMOTE will generate 

XN=(A,B,C,J,F,1.2). Note that for the fifth attribute of XN, we choose F, but E or G can be chosen too. And 
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for the case when attribute is numeric (the sixth attribute of XN), we can simply generate a mean value of 1.0, 

1.5 and 1.1. 

2.2 Under-sampling

Under-sampling is basically a technique for reducing instances. This involves removal of instances, which 

usually is performed randomly. In short, random under-sampling (RUS) is a widely used technique for 

under-sampling. There is a big question regarding random under-sampling. The question is that the 

under-sampling should be objected to minimize dissimilarity between original data and under-sampled data

with respect to the task under consideration (usually classification or regression task). 

In imbalanced data, under-sampling is usually performed on majority data. As its name implies, the 

sampling algorithm randomly remove instances until the distribution between major category and minor 

category is nearly uniform. 

2.3 Fractional instances

In fractional instance setting, every instance is associated with a weight. In fractional instance setting, the 

weight is included to real number set. This fractional instance setting is sometimes used to fill the missing 

value in the data. That is, instead of filling the missing value with statistical estimate such as mean value, 

median value or mode value, the missing value can be replaced with distribution of values. For example, if 

the bag (or multiset) of attribute values (generated from training data) for the attribute of the particular 

missing value is {1:3, 2:2, 3:2}, then mean value is 1.86, median value is 2 and mode value is 1. In fractional 

instance setting, the missing value is replaced with distribution {1:3/7, 2:2/7, 3:2/7}. This literally means the 

missing value is 1 with 3/7 weight, 2 with 2/7 weight, and 3 with 2/7 weight. One popular usage of this 

setting is AdaBoost [6] which maintains a distribution for each instance. 

For data imbalance problem, we can set higher weight to minority category than to majority category. For 

example, if majority category has 1,000 instances and minority class has 100 instances, then majority 

instance will have the weight 1 and minority class will have the weight 10. 

2.4 Cost for misclassification

If the machine learning algorithm can aware cost for classification [12], assigning higher weight for 

misclassifying minor category can be a solution too. In the loss function for the learning algorithm can 

accommodate cost vector, instead of assigning different weights for instances which is sometimes 

complicated, we can assign cost vector (or matrix) as hyper-parameters of the algorithm. This is natural that,

for example, mistaking an enemy as a friend is usually more dangerous than mistaking a friend as an enemy. 

In imbalanced data, usually this, so called, interesting event (e.g. enemy, intrusion, bankruptcy, etc.) is 

rarer than normal event (e.g. friend, safe state, healthy company, etc.). Therefore, usually we assign higher 

cost to misclassifying abnormal as normal in data imbalance situation. One problem is that it is usually hard 

to deciding proper cost vector for misclassification.

2.5 Imbalance-aware learning algorithms

One fundamental way for solving data imbalance problem is to devise a machine learning algorithm that 

perform optimization with the consideration of data imbalance situation. For example, GMBoost [2] is a 

natural extension of AdaBoost to accommodate data imbalance situation using geometric mean. 
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3. Heterogeneous ensemble

Ensemble approach is an approach to construct a committee of classifiers (or models). It is well known 

that ensemble may not reduce bias but surely reduce variance. If the same learning algorithm is used for each 

classifiers in the ensemble, it is homogeneous ensemble, otherwise it is heterogeneous ensemble. There are 

many different approaches for generating ensemble. 

Figure 1. Bagging

3.1 Bagging

Bagging stands for Bootstrap Aggregating [5]. For a given data bootstrap techniques is applied to 

generate a new data. Bootstrap technique is to sample an instance with replacement from the original data. 

Figure 1 shows the diagram of Bagging. 

3.2 Boosting

In Boosting [6], we use a distribution vector to maintain instance weights. The instance weight is 

initialized with 1.0 in the beginning. After applying a machine learning algorithm, the instance weight is 

updated according to the classification error. That is, when the previous classifier misclassify a certain 

instance, the weight for the instance is incremented, other the weight is decremented. Figure 2 shows the 

diagram of Boosting. 

Figure 2. Boosting
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3.3 Arcing

Adaptively resample and combine (Arcing) is similar to Boosting. Arcing is a sequential procedure where 

the next classifier is constructed based on the performance of the previous classifier. The difference between 

Arcing and Boosting is that Arcing uses the same weight for each classifier and Boosting uses different 

weights for classifiers. 

3.4 Stacking

Note that Bagging can be a parallel process because there is no dependence among the classifiers, and so 

bootstrap can be applied in parallel to a dataset. Boosting and Arcing, to the contrary, adjust weights of 

instances according to the output of previous classifier, thus is a serial process. 

Stacking is also a serial process, but instead of adjusting the weights of instances, the input of the next 

classifier is generated from the output of the previous classifier. That is, the output of the previous classifier 

is directly fed as an input to the next classifier. 

4. Our approach

In our approach, we generate heterogeneous ensemble of models (or classifiers) which are generated from 

three datasets ad five different algorithms. The five algorithms are C4.5 decision tree learner, Naïve Bayes, 

support vector machines (SVM), repeated incremental pruning to produce error reduction (RIPPER), and 

logistic regression. 

5. Experiments

We choose intrusion detection task for evaluating our approach on data imbalance problem. We use 

University of New Mexico (UNM) dataset [13] for intrusion detection. 

5.1 Datasets

Each dataset in UNM data is a collection of abstracted system call sequences which corresponds to a 

specific exploit.  We use ‘UNM live lpr MIT’ dataset for testing our algorithm. In ‘UNM live lpr MIT’ 

dataset, the number of normal sequences is 2,704 and the number of abnormal sequences is 1,001 [10]. We 

divide the data into a training set (1,803 normal sequences and 667 abnormal sequences) and a test set (901

normal sequences and 334 abnormal sequences). After under-sampling of the training set, the new training 

set has 667 normal sequences and 667 abnormal sequences. After over-sampling of the training set, the 

training set has 1,803 normal sequences and 1,803 abnormal sequences. For each sequence, we generate a 

bag of system calls following Kang’s approach [10].

5.2 Experimental Results

Table 1 shows the results of applying five algorithms and our ensemble to ‘UNM live lpr MIT’ dataset. 

This experimental task is basically misuse detection where the learning algorithm is exposed to both normal 

instances and abnormal instances in the training stage. 

Table 1. Experimental results on UNM live lpr MIT

Algorithm Naïve Bayes C4.5 RIPPER SVM Logistic 

Regression

Heterogeneous 

Ensemble

Original
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Accuracy 99.43 99.35 99.84 99.84 100.00 100.00

Detection rate 99.10 100.00 100.00 100.00 100.00 100.00

False positive rate 0.40 0.90 0.20 0.20 0.00 0.00

Under-Sampling

Accuracy 99.51 98.30 99.43 99.68 99.60

Detection rate 99.10 100.00 100.00 100.00 100.00

False positive rate 0.30 2.30 0.80 0.40 0.60

Over-Sampling

Accuracy 99.51 99.83 99.84 99.84 100.00

Detection rate 99.10 100.00 100.00 100.00 100.00

False positive rate 0.30 0.20 0.20 0.20 0.00

From the result in Table 1, it can be seen that our heterogeneous ensemble shows superior or comparable 

results in terms of accuracy, detection rate, and false positive rate. Note that our heterogeneous ensemble in 

the last column is a committee of fifteen classifiers shown in the first five columns of Table 1, therefore there 

are no results of under-sampling and over-sampling for heterogeneous ensemble. 

6. Conclusion

In this paper, we propose heterogeneous ensemble of fifteen classifiers generated from the combination of 

three datasets (original, under-sampled, and over-sampled) and five learning algorithms (naïve Bayes, C4.5, 

RIPPER, SVM, and Logistic Regression). Experimental results from ‘UNM live lpr MIT’ dataset show that 

our proposed heterogeneous ensemble outperform other learning algorithms. 

Possible future work include the application of this approach for deep learning methodologies [14,15].
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