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ABSTRACT 
 

Imbalanced data sets are difficult to be classified since most classifiers are developed based on the assumption that class 
distributions are well-balanced. In order to improve the error back-propagation algorithm for the classification of imbalanced data 
sets, a new error function is proposed. The error function controls weight-updating with regards to the classes in which the training 
samples are. This has the effect that samples in the minority class have a greater chance to be classified but samples in the majority 
class have a less chance to be classified. The proposed method is compared with the two-phase, threshold-moving, and target node 
methods through simulations in a mammography data set and the proposed method attains the best results. 
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1. INTRODUCTION 

 
 

 

The class imbalance problem has been emerged as a new 
challenge, since it is reported in a wide range of applications 
[1]-[4]. Particularly, for bi-class applications of imbalanced 
data sets, the usual class is represented by a large number of 
samples while the other unusual class with great interest is 
represented by only a few samples. This imbalanced class 
distribution of a data set has posed a serious difficulty for most 
classifier learning algorithms, which assume a relatively 
balanced class distribution and equal misclassification costs [5]. 

Multilayer perceptrons (MLPs) have been widely applied to 
pattern classification problems. A popular method of training 
MLPs is the error back-propagation (EBP) algorithm, which is 
a gradient descent with a fixed learning rate [6]. When applying 
the conventional EBP algorithm to the imbalanced data sets, the 
class boundary of the majority class is enlarged towards the 
minority class [7]. In order to prevent this boundary distortion, 
Bruzzone and Serpico proposed the two-phase method which 
strengthens the error function related to the minority class [8]. 
Also, the threshold-moving method adjusts the output 
thresholds of neural networks such that samples in the minority 
class become harder to be misclassified [9]. In spite of 
performance improvement, these methods show serious 
fluctuations in their learning curves because of the incorrect 
saturation of output nodes [10][11]. For preventing the above 
problems, an error function was proposed so that the weight-
updating of neural networks was controlled with regards to the 
target node of each class [11]. This target node method showed 
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better performances than the two-phase and threshold moving 
methods without serious fluctuations of learning curves. 
However, the target node method has a heuristic procedure to 
fix the imbalance of cases in which each output node is selected 
as the target node.  

This paper proposes a new error function which can improve 
the EBP algorithm for imbalanced data sets without any 
heuristic procedure. In section 2, the conventional EBP 
algorithm is briefly introduced. A new error function for the 
imbalanced data set is proposed in section 3 and section 4 
shows the effectiveness of the proposed method through 
simulations of the mammography data set. Finally, section 5 
concludes this letter. 

 
 

2. ERROR BACK-PROPAGATION ALGORIHTM 
 

Consider an MLP consisting of N inputs, H hidden nodes, 
and M output nodes, which is denoted as an “N-H-M MLP”. 

When a sample ],,,[ )()(
2

)(
1

(p) p
N

pp xxx =x ),,2,1( Pp =  
is presented to the MLP, the j-th hidden node is given by 

∑
=

=+=

=
N

i

p
ijij

j
p

j

Hjxww

hh

1

)(
0

(p))(

.,,2,1  ),2/)tanh((       

)(



x
  (1) 

Here, jiw denotes the weight connecting ix  to jh  and 

0jw  is a bias. The k-th output node is 
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Also, 0kv  is a bias and kjv denotes the weight connecting 

jh  to ky .  

 
Fig. 1. The architecture of a multilayer perceptron. 

 
Let the desired output vector corresponding to the training 

sample (p)x  be ],,,[ )()(
2

)(
1

(p) p
M

pp ttt =t , which is coded 
as follows:  
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As a distance measure between the actual and desired outputs, 
we usually use the squared error function for P training 
samples defined by 
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To minimize E, weights kjv ’s are iteratively updated by 
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is the error signal and η  is the learning rate. Also, weights 

jiw ’s are updated by 
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The above weight-updating procedure is the EBP algorithm [6]. 
 
 

3. PROPOSED ERROR FUNCTION 
 

This paper considers the two-class problems with 
imbalanced data sets [1-4]. Assume that one is the minority 
class 1C  with 1P  training samples and the other is the 

majority class 2C  with 2P  training samples ( 21 PP << ). If 
we use the conventional EBP algorithm to train the MLP, 
weight-updating is overwhelmed by the majority class samples 

and this severely distorts the boundary between the two classes 
[7]. That is, the boundary of the majority class is enlarged to 
the boundary of the minority class. This gives a less chance to 
be classified for the minority class samples while samples in 
the majority class have a greater chance to be classified. Finally, 
we attain poor classification performance for the minority class 
even though samples in the minority class have a high 
misclassification cost. 

 
In order to resolve the above problem, we propose a new 

error function which can intensify weight-updating for the 
minority class samples and weaken weight-updating for the 
majority class samples. Accordingly, the proposed error 
function is defined by 
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where n and m (n<m) are positive integers and )( p
kt  is coded 

as in (4). If n=m, the proposed error function is the same as the 
n-th order error function proposed in [10] which dramatically 
reduces the incorrect saturation of output nodes. Using the 
proposed error function, the error signal of the output layer is 
given by 

( )
( )





∈−

∈−=

∂

∂
−=

−+

−+

.for 2/
,for 2/       

ˆ

2
1)()(1)(

1
1)()(1)(

)(
)(

Cpytt
Cpytt

y
E

mmp
k

p
k

mp
k

nnp
k

p
k

np
k

p
k

propp
kδ

 (10) 

The parameters n and m controls the updating amount of 
weights whether training samples are in the minority or 

majority classes. Since n<m and 11 )( ≤≤− p
ky , the error 

signal for 1C  is greater than or equal to the error signal for 

2C . The associated weights are updated in proportion to the 
error signals, which is the same procedure as in the EBP 
algorithm [6]. Thus, in order to prevent the boundary distortion, 
the proposed error function generates a stronger error signal for 
the minority class. 

 
The proposed error function can be written by 
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In the limit ∞→P , the minimizer of newE converges (under 
certain regularity conditions, Theorem 1 in [12]) towards the 
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minimizer of the expectation function 
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Here, {}⋅E is the expectation operator, X is the random vector 

denoting an input pattern, and kT is the random variable 
denoting the target. Also, 

( ) [ ]xXXx == | class from originates Pr kQk     (15) 

and ( )xf  is the probability density function of x . Let us 

seek the function Tbb ],[ 21=b minimizing the criterion (14) 
[in the space of all functions taking values in (-1,1)][13]. For a 
fixed ( )xkQ , ( ) 10 << xkQ , the optimal solution 

Tbb ][ 21 (X)(X),b(X) = can be derived by 
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As a result, 
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Fig. 2 shows the optimal solution with n=2 and m=4. Since 
( ) ( )xx 21 bb >  with the condition n<m, the proposed error 

function has an effect of threshold adjusting for classification 
of imbalanced data. Also, notice that the optimal solution is a 
strictly increasing function and the Bayes classifier can be 
defined by 

( )[ ].  maxarg if    decide xkk ykk =        (18) 
This argument shows that the proposed error function is 
sensible in a bi-classification task of imbalanced data sets, 
provided that there are two output nodes whose targets are 
coded as in (4). If we use a different coding of targets, we 
should modify the proposed error function. The proposed error 
function works only for bi-class tasks. Multi-class tasks are 
more difficult than two-class tasks and a higher degree of class 
imbalance may increase the difficulty[9]. So, it is another big 
issue to handle the imbalance in multi-class tasks. 
 

Since the class 1 is the minority class and the class 2 is the 

majority class, the cases that 1=)(
1

pt and 1)(
2 -=pt  is much 

less than the cases that 1)(
1 -=pt  and 1=)(

2
pt . As shown in 

Fig. 2, ( ) ( ) ||>|| 21 xx bb  for ( ) 1<<5.0 xkQ  and the cases 

that 1=)(
1

pt is less than the cases that 1=)(
2

pt . For 

( ) 5.0<<0 xkQ , ( ) ( ) ||<|| 21 xx bb  and the cases that 

1-)(
2 =pt is less than the cases that 1)(

1 -=pt . Thus, the stronger 
optimal solution corresponds to the less cases of target 
selection. 
 

In the target node method[11], on the contrary, 
( ) ( ) ||>|| 21 xx bb  for ( ) 1<<5.0 xkQ  and the cases that 

1=)(
1

pt is less than the cases that 1=)(
2

pt . For 

( ) 5.0<<0 xkQ , ( ) ( ) |||| 21 x>x bb  and the cases that 

1)(
2 -=pt is less than the cases that 1)(

1 -=pt . That is, the 
weak optimal solution corresponds to the less cases of target 
selection for ( ) 5.0<<0 xkQ and the stronger optimal 
solution corresponds to the less cases of target selection for 

( ) 1<<5.0 xkQ . So, there must be a heuristic procedure to 
fix the imbalance of target selection in the target node method. 
However, in the proposed method, it is not necessary to fix the 
imbalance of target selection since the stronger optimal solution 
corresponds to the less cases and the weak optimal solution 
corresponds to the more cases for whole range of ( )xkQ . 

 

 
Fig. 2. The optimal solutions of )(Xky for minimizing 
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r yTlE X . {}⋅E is the expectation operator and  

( )∑ =

2

1

)( ),(
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r yTl X is the proposed error function when a 

random vector X  is presented to an MLP. Also, ( )xkQ  is 
the posterior probability [ ]xXX =| class from originates Pr k . 
 
 

4. SIMULATIONS 
 
The proposed method was compared with the conventional 

EBP [6], two-phase [8], threshold moving [9], and target node 
[11] methods through simulations of “Mammography” data set 
[4]. The “Mammography” data set has 260 minority class 
samples and 10293 majority class samples, that is, the minority 
ratio is 2.32%. The “5-fold cross-validation” technique was 
used for performance evaluations because its test data is not 
provided. The MLP consisted of six inputs, four hidden, and 
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two output nodes. Since no fair comparison was possible if the 
learning rates were kept the same for all methods[14], the 

learning rates were derived so that }{ )( p
kE δη   had the same 

value in each method. Here, we assumed that )( p
ky  had 

uniform distribution on [ ]1 ,1−  [10]. As a result, we used 
( ) ( )[ ] PPmPn /11001.0 21 +++×=η , ( ) ( )[ ] 2/11001.0 +++×= mnη , 

and 006.0=η  for the proposed method, the target node 

method, and the other methods, respectively. Let 1A  denote 

the accuracy for 1C  and 2A  denote the accuracy for 2C . In 

this letter, the G-mean (geometric mean) of 1A  and 2A  is 
used as a performance measure since the total accuracy is not 
adequate for the imbalanced data problem [7]. Nine simulations 
were conducted using each method with the same initializations 
of uniform weights on [ ]44 101 ,101 −− ××−  . Totally 45 cases of 
simulation results-that is, nine weight initialization cases times 
five validation set cases-were averaged to draw figures. For fair 
comparisons, we tried various parameter values (T for the two-
phase method [8], TH for the threshold moving method [9], and 
(n, m) for the target node [11] and the proposed methods, 
respectively) and the best average case of the G-mean in each 
method is shown in Figures 3 and 4.  
 

Fig. 3 shows the G-mean curve of each method. As expected, 
the conventional EBP method was the worst. The threshold 
moving (TH=15), two-phase (T=0.2), and target node (n=2, 
m=18) methods improved the performance. Among the 
improved methods, the best one was the proposed method (n=2, 
m=8). For more detailed comparisons, we drew curves of 1A , 

2A , the G-mean and the total accuracy in Fig. 3. As shown in 
Fig. 4(a), the conventional EBP resulted in very low values of 

1A  and the G-Mean, although the total accuracy was about 

98%. The two-phase method (Fig. 4(b)) improved 1A and the 

G-mean, however, there were fluctuations of 1A  and 2A . 
Even though the threshold moving method (Fig. 4(c)) was 
better than the conventional EBP, it was worse than the two-
phase method. Also, its 12 AA −  is greater than that of the 

two-phase method. Fig. 4(d) shows that the target node method 
improved 1A and the G-mean with less 12 AA − . Finally, as 

shown in Fig. 4(e), the proposed method attained the best of 

1A  and the G-mean with the least 12 AA − . 

 
 

5. CONCLUSIONS 
 

In this paper, a new error function for the EBP algorithm 
was proposed especially to improve the classification of 
imbalanced data. The proposed error function generated a 
stronger error signal of output node for the minority class 
samples and this could prevent the invasion of class boundary 
from the majority class to the minority class. The 
effectiveness of the proposed method was verified through 

simulations of “Mammography” data. Comparing with the 
conventional EBP, two-phase, threshold moving and target 
node methods, the proposed method attained the best 
performance with the criteria of 1A , G-mean and 12 AA − . 

 

 
Fig. 3. The geometric mean of class accuracies for 

“Mammography” data. The order of curves in the legend 
coincides with the descending order of curves at the 20000th 

epoch. 
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(e) 

Fig. 4. Simulation results for “Mammography” data. (a) The 
conventional EBP method. (b) The two-phase method (T=0.2). 
(c) The threshold moving method (TH=15). (d) The target node 

method (n=2, m=18). (e) The proposed method (n=2, m=8). 
The curves in (a)-(e), sorted in descending order, are 2A (the 

accuracy for majority class), total accuracy, G-Mean, and 

1A (the accuracy for minority class). 
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