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Abstract

In this paper, we explore the details of three classic data augmentation methods and two generative 

model based oversampling methods. The three classic data augmentation methods are random sampling

(RANDOM), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive Synthetic Sampling 

(ADASYN). The two generative model based oversampling methods are Conditional Generative Adversarial 

Network (CGAN) and Wasserstein Generative Adversarial Network (WGAN). In imbalanced data, the whole 

instances are divided into majority class and minority class, where majority class occupies most of the 

instances in the training set and minority class only includes a few instances. Generative models have their

own advantages when they are used to generate more plausible samples referring to the distribution of the 

minority class. We also adopt CGAN to compare the data augmentation performance with other methods. 

The experimental results show that WGAN-based oversampling technique is more stable than other 

approaches (RANDOM, SMOTE, ADASYN and CGAN) even with the very limited training datasets. 

However, when the imbalanced ratio is too small, generative model based approaches cannot achieve 

satisfying performance than the conventional data augmentation techniques. These results suggest us one of 

future research directions. 
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1. Introduction

Imbalanced data may cause learning bias (also called suboptimal results) [1]. This learning bias can 

expand the decision boundary of the majority class and thereby deteriorate minority class recognition 

performance. Oversampling replicates the minority samples so that the distribution is balanced. The most 

commonly used oversampling methods are Random Sampling [2], Synthetic Minority Over-sampling 

Technique (SMOTE) [3] and Adaptive Synthetic Sampling (ADASYN) [4]. Our approach takes advantage 

of Generative Adversarial Network (GAN) [5] to capture the modes of distribution and to overcome 
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imbalance problem in the original datasets by artificially generating data samples. We compare Conditional 

GAN (CGAN) [6] and Wasserstein GAN (WGAN) [7] with conventional data augmentation methods

(SMOTE and ADASYN) through a large amount of experiments based on 16 common datasets. 

2. Related Work

Random Oversampling is one of the earliest resampling methods which adds minority classes samples by 

easily duplicating the member of minority classes, which is proven to be robust, but the information learned 

by the model is too special to be generalized and easily over-fitted [2]. To cope with this problem, SMOTE 

analyzes minority class and synthesizes new samples according to the minority class. However, SMOTE has 

two main problems. First, there is some blindness in the selection of k-nearest neighbors. The choice of k 

value needs to be determined by the user. In addition, SMOTE is prone to the problem of marginalization. 

This type of marginalization will blur the boundaries of positive and negative class. This can be easily 

aggravated during the training phase and increases the difficulty of classification. Instead of sampling from k 

values, ADASYN adaptively generates minority samples according to minority distribution. 

3. GAN Topologies for Experiments

In these experiments, we have adopted WGAN because it tries to approximate Earth Mover (EM) 

distance for smooth measurement of the distances between distributions. The architecture of a generator in

our WGAN based on CNN is shown in Table 1.

Table 1. The architecture of the generator of our WGAN. “#” is the number of attributes.

Layer Feature maps Activation Kernel size padding

Input 100 - - -

Dense_1 1*# ReLU - -

Conv2D_2 1*#*25 ReLU 2 1

Conv2D_3 1*#*50 ReLU 2 1

Conv2D_4 1*#*1 tanh 2 1

The input layer of the generator is a random vector which is produced from a normal distribution with 

100 dimensions. The following layer in the generator is a fully connected layer with dimensions of 1*#, in 

other words, one multiplied by the number of attributes (denoted as #). Note that different dataset usually 

consists of different number of attributes. After the fully connected layer, there is a series of convolutional 

layers with ReLU activation and batch normalization with momentum=0.8. The output of the generator is 

1*#*1 which should match the dimensionality of the input layer in the discriminator. Please refer to Table 1 

for more detail.  And the architecture of a discriminator in our WGAN based on CNN is shown in Table 2. 

Table 2. The architecture of the discriminator of our WGAN. “#” is the Number of attribute.

Layer Feature maps Activation Kernel size strides padding

input 1*#*1 - - - -

Conv2D_1 1*#*4 LeakyReLU 2 1 1

Conv2D_2 1*#*9 LeakyReLU 2 1 1

Conv2D_3 1*#*18 LeakyReLU 2 1 1

Conv2D_4 1*#*9 LeakyReLU 2 1 1



Experimental Analysis of Equilibrization in Binary Classification for Non-Image Imbalanced Data Using Wasserstein GAN  39

Flatten_5 171 - - - -

Dense_6 1 - - - -

The input of the discriminator is also a type of vector. It can be a real sample or a generated one, with 

dimensions of 1*#*1 followed by a series of convolutional layers which paired with batch normalization 

with momentum=0.8 and Dropout layer. We adopt ReLU as activation in the generator network whereas in 

the discriminator, we use LeakyReLU with alpha=0.2. The Flatten layer is able to change a tensor data to a 

vector. The optimizer of the WGAN is RMSProp with learning rate=5e-5. This architecture is summarized in 

Table 2. 

4. Experimental Results

We have performed over-sampling on sixteen datasets in order to evaluate our idea for alleviating data 

imbalance problems. All these datasets are available from the UCI Machine Learning Repository [8].  

First, we divide datasets into ‘train’ and ‘test’. The test set should be balanced and has about 50% 

instances of minority class. For example, if class ‘+’ has 100 instances and class ‘–’ has 500 instances 

(100,500) in the original dataset, then we divide the set so that the training set has (50,450), and the test set 

has (50,50), as shown in Table 3. Second, we train a neural network and SVM with the training set and 

classify the test set as the baseline without over-sampling. For the neural network, we set the number of 

layers N=4 in which the number of nodes is 100, 50, 100, 2, respectively. As for the setup of SVM, we use

cost parameter as 0.1, linear kernel, and one-versus-rest strategy.

Table 3. divided datasets

DATASET Name #training set #test set

BREAST-CANCER (40,166) (40,40)

BREAST-W (121,338) (120,120)

COLIC (73,159) (73,73)

COLIC-ORIG (62,182) (62,62)

CREDIT-A (154,230) (153,153)

CREDIT-G (150,550) (150,150)

DIABETES (134,366) (134,134)

HEART-STATLOG (60,90) (60,60)

HEPATITIS (34,125) (33,33)

IONOSPHERE (63,162) (63,63)

KR-VS-KP (764,906) (763,763)

LABOR (30,47) (30,30)

MUSHROOM (1458,2750) (1458,1458)

SICK (116,3426) (115,115)

SONAR (49,63) (48,48)

VOTE (84,183) (84,84)

We use several different machine learning algorithms for our experiments. In the results shown in Table 4

(taking BREAST-CANCER dataset as an example), SVM_ BASELINE and NN_ BASELINE are trained by 

imbalanced training dataset (BREAST-CANCER) which has 286 instances including 80 ‘+’ instances and 

206 ‘-’ instances. We divide it into a training dataset and a test dataset where the test data has (40,40) and the 

training data has (40,166). SVM_ BASELINE and NN_ BASELINE are trained by imbalanced training 

dataset (40,166), obtaining accuracy values 50.0 and 50.0 respectively. SVM_WHOLE (SVM trained with 
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the whole data) and NN_WHOLE (NN trained with the whole data) are trained by (166,166) training data in 

which 126 ‘+’ instances of the training data are generated by GAN (CGAN or WGAN). The GAN’s are 

trained by all instances in the dataset, i.e., 286 instances including 80 ‘+’ instances and 206 ‘-’ instances.

Models named SVM_(50,50) (i.e. SVM with 50% instances of minority class and 50% instances of majority 

class) and NN_ (50,50) (i.e. NN with 50% instances of minority class and 50% instances of majority class)

are using (40,103) subset of the training dataset for GAN (CGAN or WGAN) to obtain a balanced dataset. In 

models named SVM_(+,) and NN_(+,), we feed all ‘+’ instances to GAN to make a balanced dataset. For the 

models, SVM_ KMSMOTE and NN_ KMSMOTE, we perform over-sampling using SMOTE. SVM_

ADASYN and NN_ ADASYN are from ADASYN oversampling. Finally, we use random oversampling for 

SVM_ RANDOM and NN_ RANDOM.

Table 4 reports the overall performances in terms of accuracy for different datasets over-sampling for the 

minority classes. The number of the new samples generated by all methods for the minority class is equal to 

number of majority instances minus number of minority instances. As can be observed, CGAN and WGAN 

do not outperform for all datasets. LABOR dataset (shown in italic in Table 4) has only 137 samples, which 

is the smallest one in all datasets, however, its CGAN and WGAN performance is significantly better than 

the conventional data augmentation techniques. Meanwhile, WGAN can also slightly outperform CGAN.

Table 4. Performance Accuracy
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BREAST-CANCER 50.0 50.0 53.0 62.0 59.0 62.0 60.0 61.0 CGAN 61.0 53.0 61.0 61.0 61.0 59.0

WGAN 50.0 52.0 50.0 49.0 50.0 51.0

BREAST-W 86.0 74.0 90.0 79.0 91.0 80.0 95.0 88.0 CGAN 95.0 95.0 86.0 92.0 85.0 95.0

WGAN 95.0 82.0 93.0 80.0 92.0 78.0

COLIC 80.0 50.0 79.0 55.0 79.0 66.0 77.0 50.0 CGAN 79.0 65.0 81.0 59.0 80.0 59.0

WGAN 84.0 65.0 83.0 50.0 82.0 50.0

COLIC-ORIG 50.0 50.0 71.0 49.0 64.0 50.0 71.0 50.0 CGAN 60.0 57.0 50.0 50.0 50.0 52.0

WGAN 62.0 50.0 62.0 41.0 62.0 34.0

CREDIT-A 50.0 67.0 50.0 61.0 50.0 57.0 50.0 55.0 CGAN 50.0 59.0 50.0 55.0 50.0 59.0

WGAN 50.0 67.0 50.0 53.0 50.0 50.0

CREDIT-G 54.0 50.0 72.0 50.0 70.0 50.0 70.0 50.0 CGAN 56.0 50.0 58.0 51.0 57.0 56.0

WGAN 62.0 50.0 60.0 50.0 64.0 50.0

DIABETES 52.0 50.0 66.0 50.0 67.0 50.0 68.0 50.0 CGAN 70.0 64.0 48.0 47.0 48.0 48.0

WGAN 66.0 50.0 55.0 54.0 55.0 50.0

HEART-STATLOG 82.0 50.0 80.0 50.0 79.0 50.0 79.0 50.0 CGAN 81.0 72.0 81.0 71.0 81.0 60.0

WGAN 84.0 50.0 84.0 50.0 85.0 50.0

HEPATITIS 50.0 50.0 73.3 66.7 73.3 50.0 76.7 50.0 CGAN 53.3 43.3 53.3 53.3 73.3 73.3

WGAN 52.5 50.0 52.5 50.0 52.5 50.0

IONOSPHERE 64.0 51.0 66.0 65.0 67.0 56.0 68.0 56.0 CGAN 75.0 62.0 56.0 74.0 74.0 55.0

WGAN 63.0 55.0 63.0 55.0 64.0 61.0

KR-VS-KP 73.0 76.0 73.0 75.0 73.0 74.0 73.0 80.0 CGAN 73.0 69.0 78.0 79.0 74.0 88.0

WGAN 77.0 78.0 77.0 87.0 77.0 90.0

LABOR 65.0 50.0 95.0 60.0 95.0 50.0 95.0 50.0 CGAN 95.0 40.0 95.0 70.0 95.0 55.0

WGAN 100.0 50.0 100.0 87.5 100.0 56.25

MUSHROOM 95.0 50.0 95.0 88.0 95.0 92.0 95.0 88.0 CGAN 95.0 95.0 95.0 95.0 95.0 95.0

WGAN 95.0 55.0 95.0 79.0 93.0 90.0

SICK 50.0 50.0 79.0 70.0 77.0 69.0 76.0 62.0 CGAN 79.0 72.0 51.0 52.0 50.0 51.0

WGAN 77.0 50.0 77.0 50.0 77.0 50.0
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SONAR 50.0 46.0 48.0 50.0 49.0 43.0 48.0 51.0 CGAN 60.0 49.0 56.0 34.0 57.0 50.0

WGAN 50.0 50.0 50.0 50.0 50.0 51.0

VOTE 96.0 85.0 96.0 89.0 96.0 93.0 95.0 88.0 CGAN 96.0 94.0 96.0 92.0 96.0 92.0

WGAN 96.0 88.0 96.0 95.0 96.0 90.0

Fig. 1 illustrates the performance of all methods on the LABOR dataset. It can be observed that the total 

running result on neural network (a) is not as good as on SVM (b). This should be attributed to the fact that 

there are too few samples in the dataset which results in that the neural network cannot be trained as well. It 

can be found that the worst performance in (a) is the CGAN_NN_WHOLE. Its accuracy is 40.0 which is 

even less than NN_BASELINE. Nevertheless, the corresponding result of WGAN (WGAN_NN_WHOLE) 

is 50.0, equal to NN_BASELINE. This suggests that WGAN performs more robustly even if the training 

samples are very small. In contrast, the stability of CGAN is slightly insufficient. In addition, the 

conventional data augmentation techniques can achieve higher accuracy for some situations in (a) and (b). 

This indicates the efficacy of the conventional data augmentation approach in the type of problems. 

Figure 1. Comparative analysis of the conventional data augmentation techniques 
(RANDOM, KMSMOTE, ADASYN) and CGAN, WGAN on the LABOR dataset. (a) 

Performance on Neural Network (NN). (b) Performance on SVM.
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5. CONCLUSION

In the future work, we will make attempt to use Bayesian-GAN since it is superior to CGAN and WGAN 

[9]. And we will study the more profound effects of imbalanced ratio on WGAN to provide reference on 

using it for data augmentation and various related tasks [10,11].
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