• Title/Summary/Keyword: Imbalance Vibration

Search Result 50, Processing Time 0.032 seconds

Controller Design and Imbalance Vibration Analysis in Active Magnetic Bearing System (능동자기베어링 시스템의 제어기 설계 및 불균형 진동 분석)

  • 강종규;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.457-462
    • /
    • 2004
  • Active magnetic bearings (AMB's) have become practical in many industrial fields and numbers of studies for magnetic bearing systems have been reported. However, AMB systems are open-loop unstable and thus require feedback control for robust stabilization and performance. In this paper, first, a rotation of the rotor around the inertial axis is considered and a rigorous modeling of a magnetic bearing system in which the rotation of the rotor is on its axis of inertia is developed. Next, to stabilize the AMB system a PID controller is used and experimentally analyze its rotational response.

  • PDF

Evaluation of idle vibration beated by cooling fan imbalance (팬 작동에 따른 비팅성 아이들 진동 평가)

  • Park, Jinhan;Ahn, Sejin;Jeong, Weuibong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.247-249
    • /
    • 2014
  • The beating phenomenon occurs because of various causes, when idle vibration was happened. In this study, the beating phenomenon was divided into several parameters and controlled by the parameter. It was hypothesized that the beating parameter is related to discomfort of idle vibration. The three-down one-up method was performed for evaluating discomfort of controlled vibrations, which is widely used in the field of psychophysics. As a result in pilot test, a subject responds beating vibration more discomfort than normal idle vibration. In the future, the study will be implemented to know how much the parameters of beating signal affect to the discomfort at idle vibration in passenger vehicle.

  • PDF

Direct acceleration feedback control of a washing machine during spinning process (드럼 세탁기 탈수시 가속도 피드백 제어)

  • Lee, Chin-Won;Seichiro, Suzuki;Sun, Hee-Bok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1642-1647
    • /
    • 2003
  • The market of the horizontal axis washing machine (drum washing machine) has been growing drastically in Korea by about 80% annually since 2000. As market grows fast, the customerTs demands concerning quality becomes more strict and various. Imbalance sensing is a key technology to reduce the NVH problem in a washing machine, because the laundry is time-variant and uncontrollable source of imbalance, which can cause more than 200kgf exciting force. In this paper, imbalance-sensing methods are briefly reviewed, new acceleration sensing circuits are examined, and finally the control algorithm of spinning process is proposed and validated.

  • PDF

The Imbalance Compensation in CMG ('제어모멘트자이로'의 질량불균형 보정)

  • Lee, Jong-Kuk;Song, Tae-Seong;Kang, Jeong-Min;Song, Deok-Ki;Kwon, Jun-Beom;Seo, Joong-Bo;Oh, Hwa-Suk;Cheon, Dong-Ik;Hong, Young-Gon;Lee, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.861-871
    • /
    • 2020
  • Raising the speed of the momentum wheel in the CMG increases the unintended force and torque caused by mass imbalance. This unintended force and torque should be minimized to get the better quality of satellite SAR image because they lead to the vibration of the output image. This paper shows the works on compensating the static imbalance and couple mass imbalance in the CMG wheel. First, the force and torque at the center of mass generated by the mass imbalance were predicted through M&S analysis. Second, the force and torque were estimated similarly through the M&S analysis when the measurement point was moved from the rotation center. Third, the measurement configuration for the force and torque by the mass imbalance was described. Fourth, the change of the force and torque by adding the specified mass to the momentum wheel was observed after comparing the measurements with the results of the M&S. And finally, the effect of the compensation was analyzed by comparing the force and torque before and after the correction while 24Nm class CMG was running in the standby mode.

Noise and Vibration Characteristics of Externally Pressurized Air proceeding Bearings with a Circular Slot Restrictor (원형 슬롯 레스트릭터를 갖는 외부 가압 공기 저널 베어링의 소음 및 진동 특성)

  • Park, Jung-Koo;Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1277-1282
    • /
    • 2003
  • The purpose of the present paper is to investigate the noise and vibration characteristics of externally pressurized air proceeding bearings with a circular slot restrictor. To do this, the nonlinear transient analysis including rotor imbalance was performed for a rotor-bearing system. The effects of radial clearance and the width of the bearing and mass eccentricity of the rotor on the noise and vibration characteristics of the bearing are also examined. The results show that the noise and vibration of the rotor-bearing system first increase up to critical speed of the system, and then decrease up to instability threshold speed of the system as the rotational speed of the rotor increases, and the noise of the bearing is markedly influenced by the mass eccentricity of the rotor and the radial clearance and the width of the bearing.

  • PDF

Prediction of Noise and Vibration Characteristics of Externally Pressurized Air Journal Bearings with a Circular Slot Restrictor (원형 슬롯 레스트릭터를 갖는 외부 가압 공기 저널 베어링의 소음 및 진동 특성 예측)

  • Rho, Byoung-Hoo;Park, Jung-Koo;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1028-1033
    • /
    • 2003
  • The purpose of this paper is to investigate the noise and vibration characteristics of externally pressurized air journal bearings with a circular slot restrictor. To do this, the nonlinear transient analysis including rotor imbalance was performed for a rotor-bearing system. The effects of radial clearance and the length of the bearing and mass eccentricity of the rotor on the noise and vibration characteristics of the bearing are also examined. The results show that the noise and vibration of the rotor-bearing system first increase up to critical speed of the system, and then decrease up to instability threshold speed of the system as the rotational speed of the rotor increases, and the noise of the bearing is markedly influenced by the mass eccentricity of the rotor and the radial clearance and the length of the bearing.

A Study on the Steering Wheel Vibration affected by the Fastening Torque of the Wheel Mounting Hub Bolts of Steel Wheels (스틸휠의 체결력에 따른 조향휠 진동에 관한 연구)

  • 안세진;정의봉;유완석;김명규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.189-195
    • /
    • 2003
  • The steel wheels are widely used in the passenger cars because of their low cost of production although the aluminum wheels have many advantages in their performance and appearance. It is known that the steering wheel vibration with steel wheels is generated more often than one with aluminum wheels. Both the constant velocity driving test and the m up test are carried out in this study to analyze the causes and path of the steering wheel vibration generated from the steel wheels. And this study shows that the steering wheel vibration is affected by the fastening torque of the wheel mounting bolts between the steel wheel and the suspension disk.

Performance Evaluation of RWA Vibration Isolator Using Notch Filter Control (노치 필터 제어기법을 이용한 반작용 휠 미소진동 절연장치의 절연성능 평가)

  • Park, Geeyong;Suh, Jong-Eun;Lee, Dae-Oen;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.391-397
    • /
    • 2016
  • Vibration disturbances induced by the reaction wheels can severely degrade the performance of high precision payloads on board satellites with high pointing stability requirements. The unwanted disturbances produced by the reaction wheels are composed of fundamental harmonic disturbances due to the flywheel imbalance and sub/higher harmonic disturbances due to bearing irregularities, motor imperfections and so on. Because the wheel speed is constantly changed during the operation of a reaction wheel, the vibration disturbance induced by the reaction wheels can magnify the satellite vibration when the rotating frequency of wheel meets the natural frequency of satellite structure. In order to provide an effective isolation of the reaction wheel disturbances, isolation performance of a hybrid vibration isolator is investigated. In this paper, hybrid vibration isolator that combines passive and active components is developed and its hybrid isolation performance using notch filter control is evaluated in single-axis. The hybrid isolation performance using notch filter control show additional performance improvement compared to the results using only passive components.

Implementation of Speed Limitation Controller Considering Motor Parameter Variation in High Speed Operation (모터 파라미터 산포를 고려한 고속 운전에서의 속도제한 제어기 구현)

  • Kim, Kyung-Hoon;Yun, Chul;Kwon, Woo-Hyen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1584-1590
    • /
    • 2017
  • This paper presents a implementation method of reliable speed limitation controller considering motor parameter variation in high speed operation. In spinning process of drum washing machine, speed increase has to be limited when unallowable imbalance mass is detected. Otherwise, severe noise and vibration can happen because noise and vibration are proportional to imbalance mass. To detect imbalance mass, d-axis current magnitude is used. However, we have to compensate for back-emf and power supply variation by means of detecting them because d-axis current is affected by both of them. On the other hand, we have to carefully estimate back-emf because back-emf is affected by stator resistance variation and inverter voltage error. Stator resistance variation can happen by manufacturing process for mass production or temperature variation in running. And there are inverter voltage errors between command voltage from micro-computer to inverter and real voltage from inverter to motor because of rising and falling time delay and turn-on resistance of power semiconductor switch. To solve this problem, we propose 2-step align current injection method which is to inject step-wise current right before starting. By this method, we can simply obtain stator resistance by ratio of voltage without inverter voltage error and current, and we can measure inverter voltage error. So we can obtain more exact model current, and then by simple calculation with compensation gain, we can estimate more accurate motor back-emf. We show that this method works well. It is verified through experiments.

The Comparison of Vibration and Power according to Operation Method of 100W IPM Type Motor

  • Lee, Gyeong-Deuk;Jo, Eul-Gyu;Kim, Gyu-Tak
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.383-388
    • /
    • 2014
  • In This paper, the output characteristics and vibrations were compared and analyzed according to operation method in 100W class. The voltage source is applied only two phase in BLDC drive system therefore commutation torque ripple and imbalance of RMF occurred. Due to this efficiency was significantly degraded because mechanical loss is increased, besides the vibration and noise were greatly generated. The vibration and output characteristics were compared and analyzed according to three phase and BLDC drive system.