• 제목/요약/키워드: Imaging probes

검색결과 154건 처리시간 0.02초

FAP Inhibitors as Novel Small Molecules for Cancer Imaging using Radionuclide

  • Anvar Mirzaei;Jung-Joon Min;Dong-Yeon Kim
    • 대한방사성의약품학회지
    • /
    • 제9권1호
    • /
    • pp.49-55
    • /
    • 2023
  • Tumors are encircled by various non-cancerous cell types in the extracellular matrix, including fibroblasts, endothelial cells, immune cells, and cytokines. Fibroblasts are the most critical cells in the tumor stroma and play an important role in tumor development, which has been highlighted in some epithelial cancers. Many studies have shown a tight connection between cancerous cells and fibroblasts in the last decade. Regulatory factors secreted into the tumor environment by special fibroblast cells, cancer-associated fibroblasts (CAFs), play an important role in tumor and vessel development, metastasis, and therapy resistance. This review addresses the development of FAP inhibitors, emphasizing the first, second, and latest generations. First-generation inhibitors exhibit low selectivity and chemical stability, encouraging researchers to develop new scaffolds based on preclinical and clinical data. Second-generation enzymes such as UAMC-1110 demonstrated enhanced FAP binding and better selectivity. Targeted treatment and diagnostic imaging have become possible by further developing radionuclide-labeled fibroblast activation protein inhibitors (FAPIs). Although all three FAPIs (01, 02, and 04) showed excellent preclinical and clinical findings. The final optimization of these FAPI scaffolds resulted in FAPI-46 with the highest tumor-to-background ratio and better binding affinity.

The production and application of therapeutic 67Cu radioisotope in nuclear medicine

  • Kim, Gye-Hong;Lee, Kyo Chul;Park, Ji-Ae;An, Gwang-Il;Lim, Sang Mo;Kim, Jung Young;Kim, Byung Il
    • 대한방사성의약품학회지
    • /
    • 제1권1호
    • /
    • pp.23-30
    • /
    • 2015
  • Radioisotopes emitting low-range highly ionizing radiation such as ${\beta}$-particles are of increasing significance in internal radiotherapy. Among the ${\beta}$-particle emitting radioisotopes, $^{67}Cu$ is an attractive radioisotope for various nuclear medicine applications due to its medium energy ${\beta}$-particle, gamma emissions, and 61.83-hour half-life, which can also be used with $^{64}Cu$ for PET imaging. The production and application of the ${\beta}$-emitting radioisotope $^{67}Cu$ for therapeutic radiopharmaceutical are outlined, and different production routes are discussed. A survey of copper chelators used for antibody labeling is provided. It has been produced via proton, alpha, neutron, and gamma irradiations followed by solvent extraction, ion exchange, electrodeposition. Clinical studies using $^{67}Cu$-labelled antibodies in lymphoma, colon carcinoma and bladder cancer patients are reviewed. Widespread use of this isotope for clinical studies and preliminary treatments has been limited by unreliable supplies, cost, and difficulty in obtaining therapeutic quantities.

Copper chelation chemistry with various chelators for radiopharmaceuticals

  • Kim, Chul Hee;Kim, Dong Wook
    • 대한방사성의약품학회지
    • /
    • 제5권2호
    • /
    • pp.129-134
    • /
    • 2019
  • Over a few decades, copper radioisotopes and their chelation chemistry for radiopharmaceuticals have played crucial role in the radiopharmaceutical science area. A variety of chelators have been required for their stable targeting ability in physiological conditions. For radiolabeling with copper-64 into biomolecules, thermodynamic stability, kinetic inertness, pH stability, and redox stability should be considered. In this regard, many researchers have attempted to develop the chelators that can bind with copper more tightly, rapidly and stably for copper radiolabeling. This review discusses the chemistry of copper, its suitable chelators and characteristics, while elucidating the evaluations of each chelator for radiolabeling.

Synthesis and evaluation of inhibitors for Polo-box domain of Polo-like kinase 1

  • Eun Kyoung Ryu
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.139-145
    • /
    • 2020
  • Polo-like kinase 1 (Plk1) is a key protein in mitosis and has been validated as a target for tumor therapy. It is well known to highly overexpress in many kinds of tumor, which has been implicated as a potential biomarker for tumor treatment and diagnosis. Plk1 consists of two domains, the N-terminus kinase domain and the C-terminus polo-box domain (PBD). The inhibitors have been developed for PBD of Plk1, which were shown a high level of affinity and selectivity for Plk1 that led to mitotic arrest and apoptotic cell death. This review discusses the inhibitors for PBD of Plk1 that are suitable for in vivo tumor treatment. They can be further extended for developing in vivo imaging probes for early diagnosis of tumor.

베타아밀로이드 영상용 프로브 ([ ${\beta}-Amyloid$ ] Imaging Probes)

  • 정재민
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권2호
    • /
    • pp.112-117
    • /
    • 2007
  • Imaging distribution of ${\beta}-amyloid$ plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the ${\beta}-amyloid$ plaques includes using radiolabeled peptides which can be only applied for peripheral ${\beta}-amyloid$ plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging ${\beta}-amyloid$ plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for ${\beta}-amyloid$ imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for ${\beta}-amyloid$ imaging agent.

Common-path Optical Coherence Tomography for Biomedical Imaging and Sensing

  • Kang, Jin-U.;Han, Jae-Ho;Liu, Xuan;Zhang, Kang
    • Journal of the Optical Society of Korea
    • /
    • 제14권1호
    • /
    • pp.1-13
    • /
    • 2010
  • This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than $3\;{\mu}m$. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.

Effect of Gd-based MR contrast agents on CT attenuation of PET/CT for quantitative PET-MRI study

  • Ko, In OK;Park, Ji Ae;Lee, Won Ho;Lim, Sang Moo;Kim, Kyeong Min
    • 대한방사성의약품학회지
    • /
    • 제1권2호
    • /
    • pp.130-136
    • /
    • 2015
  • We evaluate the influence of MR contrast agent on positron emission tomography (PET) image using phantom, animal and human studies. Phantom consisted of 15 solutions with the mixture of various concentrations of Gd-based MR contrast agent and fixed activity of [$^{18}F$]FDG. Animal study was performed using rabbit and two kinds of MR contrast agents. After injecting contrast agent, CT or MRI scanning was performed at 1, 2, 5, 10, and 20 minutes. PET image was obtained using clinical PET/CT scan, and attenuation correction was performed using the all CT images. The values of HU, PET activity and MRI intensity were obtained from ROIs in each phantom and organ regions. In clinical study, patients (n=20) with breast cancer underwent sequential acquisitions of early [$^{18}F$]FDG PET/CT, MRI and delayed PET/CT. In phantom study, as the concentration increased, the CT attenuation and PET activity also increased. However, there was no relationship between the PET activity and the concentration in the clinical dose range of contrast agent. In animal study, change of PET activity was not significant at all time point of CT scan both MR contrast agents. There was no significant change of HU between early and delayed CT, except for kidney. Early and delayed SUV in tumor and liver showed significant increase and decrease, respectively (P<0.05). Under the condition of most clinical study (< 0.2 mM), MR contrast agent did not influence on PET image quantitation.

Synthesis of 18F-labeled Novel Phosphonium cations as PET Myocardial Perfusion Imaging Agents: Pilot Imaging Studies

  • Ayoung Pyo;Jung-Joon Min;Dong-Yeon Kim
    • 대한방사성의약품학회지
    • /
    • 제8권2호
    • /
    • pp.63-70
    • /
    • 2022
  • The development of myocardial perfusion imaging (MPI) agents has been motivated because coronary artery disease has been one of the leading causes of death worldwide since the 1960s. Several positron emission tomography (PET) MPI agents were developed, and 18F-labeled phosphonium cations were reported actively among them. In this study, we synthesized novel 18F-labeled phosphonium cations, (5-[18F]fluoropentyl)diphenyl(pyridin-2-yl)phosphonium and (2-(2-[18F]fluoroethoxy)ethyl)diphenyl(pyridin-2-yl)phosphonium, and evaluated potential as MPI agents. Two labeled compounds were synthesized via nucleophilic substitution reactions of 18F-fluoride with the appropriate tosylate precursor in the presence of Kryptofix 2.2.2 and K2CO3. MicroPET studies were performed in normal rats to evaluate in vivo distribution of radiolabeled phosphonium cations for 60 min. The radiolabeled compounds were synthesized with 5%-10% yield. The radiochemical purity of labeled compounds was > 98% by analytical HPLC, and the specific activity was > 11.8 GBq/µmol. The result of microPET studies of these labeled compounds in rats showed intense uptake in the myocardium at 30 and 60 min. The results suggest that these 18F-labeled novel phosphonium cations would have potential as promising candidates for myocardial perfusion imaging.

In Vivo Non Invasive Molecular Imaging for Immune Cell Tracking in Small Animals

  • Youn, Hyewon;Hong, Kee-Jong
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.223-229
    • /
    • 2012
  • Clinical and preclinical in vivo immune cell imaging approaches have been used to study immune cell proliferation, apoptosis and interaction at the microscopic (intra-vital imaging) and macroscopic (whole-body imaging) level by use of ex vivo or in vivo labeling method. A series of imaging techniques ranging from non-radiation based techniques such as optical imaging, MRI, and ultrasound to radiation based CT/nuclear imaging can be used for in vivo immune cell tracking. These imaging modalities highlight the intrinsic behavior of different immune cell populations in physiological context. Fluorescent, radioactive or paramagnetic probes can be used in direct labeling protocols to monitor the specific cell population. Reporter genes can also be used for genetic, indirect labeling protocols to track the fate of a given cell subpopulation in vivo. In this review, we summarized several methods dealing with dendritic cell, macrophage, and T lymphocyte specifically labeled for different macroscopic whole-body imaging techniques both for the study of their physiological function and in the context of immunotherapy to exploit imaging-derived information and immune-based treatments.

Intratumoral distribution of 64Cu-ATSM and 18F-FDG in VX2tumor xenografted rabbit

  • Yoo, Ran Ji;Lee, Ji Woong;Lee, Kyo Chul;An, Gwang Il;Ko, In Ok;Chung, Wee Sup;Park, Ji Ae;Kim, Kyeong Min;Choi, Yang-Kyu;Kang, Joo Hyun;Lim, Sang Moo;Lee, Yong Jin
    • 대한방사성의약품학회지
    • /
    • 제1권2호
    • /
    • pp.123-129
    • /
    • 2015
  • $^{64}Cu$-labeled diacetyl-bis($N^4$-methylthiosemicarbazone) is a promising agent for internal radiation therapy and imaging of hypoxic tissues. In the study, we confirmed hypoxia regions in VX2 tumor implanted rabbits with injection $^{64}Cu$-ATSM and $^{18}F$-FDG using positron emission tomography (PET)/computed tomography (CT). PET images with $^{18}F$-FDG and $^{64}Cu$-ATSM were obtained for 40 min by dynamic scan and additional delayed PET images of $^{64}Cu$-ATSM the acquired up to 48 hours. Correlation between intratumoral $O_2$ level and $^{64}Cu$-ATSM PET image was analyzed. $^{64}Cu$-ATSM and $^{18}F$-FDG were intravenously co-injected and the tumor was dissected and cut into slices for a dual-tracer autoradiographic analysis. In the PET imaging, $^{64}Cu$-ATSM in VX2 tumors displayed a specific uptake in hypoxic region for48 h. The uptake pattern of $^{64}Cu$-ATSM in VX2 tumor at 24 and 48 h did not match to the $^{18}F$-FDG. Through ROI analysis, in the early phase (dynamic scan), $^{18}F$-FDG has positive correlation with $^{64}Cu$-ATSM but late phase (24 and 48 h) of the $^{64}Cu$-ATSM showed negative correlation with $^{18}F$-FDG. High uptake of $^{64}Cu$-ATSM in hypoxic region was responded with significant decrease of oxygen pressure, which confirmed by $^{64}Cu$-ATSM PET imaging and autoradiographic analysis. In conclusion, $^{64}Cu$-ATSM can utilize for specific targeting of hypoxic region in tumor, and discrimination between necrotic- and viable hypoxic tissue.