Browse > Article
http://dx.doi.org/10.22643/JRMP.2019.5.2.129

Copper chelation chemistry with various chelators for radiopharmaceuticals  

Kim, Chul Hee (Department of Chemistry and Chemical Engineering, Inha University)
Kim, Dong Wook (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of Radiopharmaceuticals and Molecular Probes / v.5, no.2, 2019 , pp. 129-134 More about this Journal
Abstract
Over a few decades, copper radioisotopes and their chelation chemistry for radiopharmaceuticals have played crucial role in the radiopharmaceutical science area. A variety of chelators have been required for their stable targeting ability in physiological conditions. For radiolabeling with copper-64 into biomolecules, thermodynamic stability, kinetic inertness, pH stability, and redox stability should be considered. In this regard, many researchers have attempted to develop the chelators that can bind with copper more tightly, rapidly and stably for copper radiolabeling. This review discusses the chemistry of copper, its suitable chelators and characteristics, while elucidating the evaluations of each chelator for radiolabeling.
Keywords
Copper; Chelators; Radiolabeling; Molecular imaging probes; Radiopharmaceuticals; Positron emission tomography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wadas T, Wong E, Weisman G, Anderson C. Copper chelation chemistry and its role in copper radiopharmaceuticals. Curr Pharm Des 2007;13:3-16.   DOI
2 Gutfilen B, Souza S, Valentini G. Copper-64: a real theranostic agent. Drug Des. Dev. Ther 2018; 12:3235-3245.   DOI
3 Hancock RD, Martell AE. Ligand design for selective complexation of metal ions in aqueous solution. Chem Rev 1989;89:1875-1914.   DOI
4 Hnatowich DJ, Layne WW, Childs RL, Lanteigne D, Daivs MA, Griffin TW, Doherty PW. Radioactive labeling of antibody: a simple and efficient method. Science 1983;220:613-615.   DOI
5 Parker D. Tumour targeting with radiolabelled macrocycle-antibody conjugates. Chem Soc Rev 1990;19:271-291.   DOI
6 Kukis DL, Li M, Meares CF. Selectivity of antibodychelate conjugates for binding copper in the presence of competing metals. Inorg Chem 1993;32:3981-3982.   DOI
7 Moi MK, Meares CF, McCall MJ, Cole WC, DeNardo SJ. Copper chelates as probes of biological systems: stable copper complexes with a macrocyclic bifunctional chelating agent. Anal Biochem 1985;148:249-253.   DOI
8 Vavere AL, Lewis JS. Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans 2007;43:4893-4902.   DOI
9 Anderson CJ, Ferdani R. Copper-64 Radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm 2009;24:379-393.   DOI
10 Zhou Y, Li J, Xu X, Zhao M, Zhang B, Deng S, Wu Y. 64Cu-based radiopharmaceuticals in molecular imaging. Technol Cancer Res Treat 2019;18:1-10.
11 Boros E, Packard AB. Radioactive transition metals for imaging and therapy. Chem Rev 2018;119:870-901.   DOI
12 Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, Indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 2010;110:2858-2902.   DOI
13 McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, Anderson CJ, Welch MJ. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Bio 1997;24:35-43.   DOI
14 Ahrens BJ, Li L, Ciminera AK, Chea J, Poku E, Bading JR, Weist MR, Miller MM, Colcher DM, Shively JE. Diagnostic PET imaging of mammary microcalcifications using 64Cu-DOTA-alendronate in a rat model of breast cancer. J Nucl Med 2017;58:1373-1379.   DOI
15 Anderson CJ, Connett JM, Schwarz SW, Rocque PA, Guo LW, Philpott GW, Zinn KR, Meares CF, Welch MJ. Copper-64-labeled antibodies for PET imaging. J NucI Med 1992; 33:1685-1691.
16 Kukis DL, Li M, Meares CF. Selectivity of antibodychelate conjugates for binding copper in the presence of competing metals. Inorg Chem 1993;32:3981-3982.   DOI
17 Tamura K, Kurihara H, Yonemori K, Tsuda H, Suzuki J, Kono Y, Honda N, Kodaira M, Yamamoto H, Yunokawa M, Shimizu C, Hasegawa K, Kanayama Y, Nozaki S, Kinoshita T, Wada Y, Tazawa S, Takahashi K, Watanabe Y, Fujiwara Y. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J Nucl Med 2013;54:1869-1875.   DOI
18 Anderson CJ, Dehdashti F, Cutler PD, Schwarz SW, Laforest R, Bass LA, Lewis JS, McCarthy DW. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 2001; 42: 213-221.
19 Bass LA, Wang M, Welch MJ, Anderson CJ. In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem 2000;11:527-532.   DOI
20 Woodin KS, Heroux KJ, Boswell CA, Wong EH, Weisman GR, Niu W, Tomellini SA, Anderson CJ, Zakharov LN, Rheingold AL. Kinetic inertness and electrochemical behavior of copper(II) tetraazamacrocyclic complexes: possible implications for in vivo stability. Eur. J. Inorg. Chem. 2005;2005:4829-4833.   DOI
21 Di Bartolo NM, Sargeson AM, Donlevy TM, Smith SV. Synthesis of a new cage ligand, SarAr, and its complexation with selected transition metal ions for potential use in radioimaging. Dalton Trans 2001;15:2303-2309.
22 Lima LMP, Esteban-Gomez D, Delgado R, Platas-Iglesias C, Tripier R. Monopicolinate cyclen and cyclam derivatives for stable copper(II) complexation. Inorg Chem 2012;51:6916-6927.   DOI
23 Boros E, Rybak-Akimova E, Holland JP, Rietz T, Rotile N, Blasi F, Day H, Latifi R, Caravan P. Pycup-A bifunctional, cage-like ligand for 64Cu radiolabeling. Mol Pharm 2013;11:617-629.   DOI
24 Bhatt N, Soni N, Ha YS, Lee W, Pandya DN, Sarkar S, Kim JY, Lee H, Kim SH, An GI, Yoo J. Phosphonate pendant armed propylene cross-bridged cyclam: synthesis and evaluation as a chelator for Cu-64. ACS Med. Chem. Lett. 2015;6:1162-1166.   DOI
25 De Silva RA, Jain S, Lears KA, Chong HS, Kang CS, Sun X, Roger BE. Copper-64 radiolabeling and biological evaluation of bifunctional chelators for radiopharmaceutical development. Nucl. Med. Biol 2012;39:1099-1104.   DOI