• Title/Summary/Keyword: Imaging method

Search Result 2,979, Processing Time 0.035 seconds

Advances in Damage Visualization Algorithm of Ultrasonic Propagation Imaging System

  • Lee, Jung-Ryul;Sunuwar, Nitam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.232-240
    • /
    • 2013
  • This paper presents recent advances in damage visualization algorithms of laser generated ultrasonic propagation imaging(UPI) system. An effective damage evaluation method is required to extract correct information from raw data to properly characterize anomalies present in structure. A temporal-reference free imaging system provides easy and rapid defect inspection capability with less computational complexity. In this paper a number of methods such as ultrasonic wave propagation imaging(UWPI), anomalous wave propagation imaging(AWPI), ultrasonic spectral imaging(USI), wavelet ultrasonic propagation imaging(WUPI), variable time window amplitude mapping(VTWAM), time point adjustment(TPA), time of flight and amplitude mapping(ToF&Amp) and ultrasonic wavenumber imaging(UWI) are discussed with instances of successful implementation on various structures.

Ultrasound Elasticity Imaging Methods (초음파 탄성 영상법)

  • Jeong, Mok-Kun;Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.1-10
    • /
    • 2010
  • The difference in echogenicity between cancerous and normal tissues is not quite distinguishable in ultrasound B-mode imaging. However, tumor or cancer in breast or prostate tends to be stiffer than the surrounding normal tissue. Thus, imaging the stiffness contrast between the two different tissue types is helpful for quantitative diagnosis, and such a method of imaging the elasticity of human tissue is collectively referred to as ultrasound elasticity imaging. Recently, elasticity imaging has established itself as an effective diagnostic modality in addition to ultrasound B-mode imaging. The purpose of this paper is to present various elasticity imaging methods that have been reported up to now and to describe their principles of operation and characteristics.

Elemental Image Generation Method with the Correction of Mismatch Error by Sub-pixel Sampling between Lens and Pixel in Integral Imaging

  • Kim, Jonghyun;Jung, Jae-Hyun;Hong, Jisoo;Yeom, Jiwoon;Lee, Byoungho
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • We propose a subpixel scale elemental image generation method to correct the errors created by finite display pixel size in integral imaging. In this paper, two errors are mainly discussed: pickup-and-display mismatch error and mismatch error between pixel pitch and lens pitch. The proposed method considers the relative positions between lenses and pixels in subpixel scale. Our proposed pickup method calculates the position parameters, generates an elemental image with pixels completely inside the lens, and generates an elemental image with border pixels using a weighted sum method. Appropriate experiments are presented to verify the validity of the proposed method.

Development of Quantification Method for Bioluminescence Imaging (발광영상에 대한 정량화 방법 개발)

  • Kim, Hyeon-Sik;Choi, Eun-Seo;Tak, Yoon-O;Choi, Heung-Kook;Lee, Ju-Young;Min, Jung-Joon;Lee, Byeong-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.451-458
    • /
    • 2009
  • Purpose: Optical molecular luminescence imaging is widely used for detection and imaging of bio-photons emitted by luminescent luciferase activation. The measured photons in this method provide the degree of molecular alteration or cell numbers with the advantage of high signal-to-noise ratio. To extract useful information from the measured results, the analysis based on a proper quantification method is necessary. In this research, we propose a quantification method presenting linear response of measured light signal to measurement time. Materials and Methods: We detected the luminescence signal by using lab-made optical imaging equipment of animal light imaging system (ALIS) and different two kinds of light sources. One is three bacterial light-emitting sources containing different number of bacteria. The other is three different non-bacterial light sources emitting very weak light. By using the concept of the candela and the flux, we could derive simplified linear quantification formula. After experimentally measuring light intensity, the data was processed with the proposed quantification function. Results: We could obtain linear response of photon counts to measurement time by applying the pre-determined quantification function. The ratio of the re-calculated photon counts and measurement time present a constant value although different light source was applied. Conclusion: The quantification function for linear response could be applicable to the standard quantification process. The proposed method could be used for the exact quantitative analysis in various light imaging equipments with presenting linear response behavior of constant light emitting sources to measurement time.

Magnetic Resonance Imaging of a Current Density Component

  • Oh, Suk-Hoon;Park, Tae-Seok;Han, Jae-Yong;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.183-188
    • /
    • 2004
  • Magnetic resonance current density imaging (MRCDI) is a useful method for measuring electrical current density distribution inside an object. To avoid object rotations during the conventional MRCDI scans, we have reconstructed current density component images by applying a spatial filter to the magnetic field data measured both inside and outside the object. To measure the magnetic field outside the object with MRI, we immersed the object in a water tank. To evaluate accuracy of the current density imaging, we have made a conductivity phantom with a corresponding finite element method model. We have compared the experimentally obtained current density images with the ones calculated by the finite element method. The average errors of the reconstructed current density images were 6.6 ∼ 45.4 % when the injected currents were 1 ∼ 24 mA. We expect that the current density component imaging technique can be used in diverse biomedical applications such as electrical therapy system developments and biological electrical safety analysis.

Underwater 3D Reconstruction for Underwater Construction Robot Based on 2D Multibeam Imaging Sonar

  • Song, Young-eun;Choi, Seung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.227-233
    • /
    • 2016
  • This paper presents an underwater structure 3D reconstruction method using a 2D multibeam imaging sonar. Compared with other underwater environmental recognition sensors, the 2D multibeam imaging sonar offers high resolution images in water with a high turbidity level by showing the reflection intensity data in real-time. With such advantages, almost all underwater applications, including ROVs, have applied this 2D multibeam imaging sonar. However, the elevation data are missing in sonar images, which causes difficulties with correctly understanding the underwater topography. To solve this problem, this paper concentrates on the physical relationship between the sonar image and the scene topography to find the elevation information. First, the modeling of the sonar reflection intensity data is studied using the distances and angles of the sonar beams and underwater objects. Second, the elevation data are determined based on parameters like the reflection intensity and shadow length. Then, the elevation information is applied to the 3D underwater reconstruction. This paper evaluates the presented real-time 3D reconstruction method using real underwater environments. Experimental results are shown to appraise the performance of the method. Additionally, with the utilization of ROVs, the contour and texture image mapping results from the obtained 3D reconstruction results are presented as applications.

Overview of Arterial Spin Labeling Perfusion MRI (동맥스핀표지 관류 자기공명영상의 개요)

  • Kang, Sung-Jin;Han, Man-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.145-152
    • /
    • 2017
  • The arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) method that can evaluate tissue perfusion using blood in the body. The characteristic of non-invasive examinations without contrast agents and the quantitative measurement of perfusion volume is possible, which are increasingly being used for clinical and research purposes. Up to the present, The ASL method has lower SNR than the perfusion imaging method using contrast agent and because optimization of various parameter in the imaging process is difficult, Which may result in measurement errors. To improve this, ASL methods using various technologies are introduced. This paper briefly introduces the outline of ASL, its features in imaging process, various techniques, and clinical application.

Two-dimensional imaging of shear wave velocity in the soil site using HWAW method (HWAW방법을 사용한 지반의 전단파 속도 2-D 영상화)

  • Park, Hyung-Choon;Kim, Dong-Soo;Kim, Jong-Tea;Park, Hyun-Jun;Bang, Eun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.7-13
    • /
    • 2008
  • To obtain a shear-wave velocity profile in geotechnical practice, various seismic investigation methods which have their own strength and weakness are being frequently used. Generally, geotechnical site have lateral variation of the properties, so it is needed to determine 2-dimensional shear wave velocity imaging of the site. In this study, harmonic wavelet analysis of wave (HWAW) method is applied to determination of 2-D $V_s$ imaging. HWAW method which is based on time-frequency analysis using harmonic wavelet transform have been developed to determine phase and group velocities of waves. HWAW method uses the signal portion of the maximum local signal/noise ratio to evaluate the phase velocity to minimize the effects of noise. HWAW method determine detailed local $V_s$ profile because one experimental setup which consists of one pair of receivers with spacing of 1~3m is used to determine the dispersion curve of the whole depth. So, 2-D Vs imaging with relatively high resolution can be determined through a series of HWAW test. In order to estimate the applicability of HWAW method, field tests were performed in 4 sites. Through field applications and comparison with other test results, the good accuracy and applicability of the proposed method were verified.

  • PDF

Importance of Volumetric Measurement Processes in Oncology Imaging Trials for Screening and Evaluation of Tumors as Per Response Evaluation Criteria in Solid Tumors

  • Vemuri, Ravi Chandra;Jarecha, Rudresh;Hwi, Kim Kah;Gundamaraju, Rohit;MaruthiKanth, Aripaka;Kulkarni, AravindRao;Reddy, Sundeep
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2375-2378
    • /
    • 2014
  • Cancer, like any disease, is a pathologic biological process. Drugs are designed to interfere with the pathologic process and should therefore also be validated using a functional screening method directed at these processes. Screening for cancers at an appropriate time and also evaluating results is also very important. Volumetric measurement helps in better screening and evaluation of tumors. Volumetry is a process of quantification of the tumors by identification (pre-cancerous or target lesion) and measurement. Volumetric image analysis allows an accurate, precise, sensitive, and medically valuable assessment of tumor response. It also helps in identifying possible outcomes such disease progression (PD) or complete response as per Response Evaluation Criteria in Solid Tumors (RECIST).

Development and performance evaluation of large-area hybrid gamma imager (LAHGI)

  • Lee, Hyun Su;Kim, Jae Hyeon;Lee, Junyoung;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2640-2645
    • /
    • 2021
  • We report the development of a gamma-ray imaging device, named Large-Area Hybrid Gamma Imager (LAHGI), featuring high imaging sensitivity and good imaging resolution over a broad energy range. A hybrid collimation method, which combines mechanical and electronic collimation, is employed for a stable imaging performance based on large-area scintillation detectors for high imaging sensitivity. The system comprises two monolithic position-sensitive NaI(Tl) scintillation detectors with a crystal area of 27 × 27 cm2 and a tungsten coded aperture mask with a modified uniformly redundant array (MURA) pattern. The performance of the system was evaluated under several source conditions. The system showed good imaging resolution (i.e., 6.0-8.9° FWHM) for the entire energy range of 59.5-1330 keV considered in the present study. It also showed very high imaging sensitivity, successfully imaging a 253 µCi 137Cs source located 15 m away in 1 min; this performance is notable considering that the dose rate at the front surface of the system, due to the existence of the 137Cs source, was only 0.003 µSv/h, which corresponds to ~3% of the background level.