• Title/Summary/Keyword: Imaging Processing Technique

Search Result 186, Processing Time 0.028 seconds

Recent Trends of the Material Processing Technology with Laser - ICALEO 2014 Review - (레이저를 이용한 소재가공기술 동향 - ICALEO 2014를 중심으로 -)

  • Lee, Mokyoung
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.7-16
    • /
    • 2015
  • New lasers such as high power, high brightness and short wavelength laser are using diverse industry. Also new technologies are developing actively to solve various issues such as spattering, process monitoring, deep penetration and key-hole stability. ICALEO is the international congress where recent technology for laser material processing and laser system are present. At 2014, it was held at San Diego in USA and more than 260 papers were presented from 28 country. The effect of the laser beam shape such as Gaussian like and top-hat was investigated on acoustic emission signal and pore formation in welding. Inline penetration depth was measured with ICI(Inline Coherent Imaging) technique and the data was verified with real time X-ray image on laser welding. The laser welding performance at low pressure environment was evaluated for the thick plate alloy steel. UV laser was used to weld various metals such as Cu, Aluminum, steel and stainless steel. The effect of the wavelength of the laser on the formation of the wave at the wall of the key-hole front and the absorptivity was investigated.

Inspection of electronic components using dual X-ray energy (이중 엑스선 에너지를 이용한 전자부품 검사)

  • Chon, Kwon Su;Seo, Seung Jun;Lim, Jae Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.301-306
    • /
    • 2015
  • X-ray can be applied to obtain a projection image of an object. It is not easy to obtain an high quality image for the object composed of low and high density materials. For the object with large difference in density, it is possible to realize high contrast image using images of low and high tube voltages and image processing. The plastic and metalic parts of the electronic components can be imaged by the dual energy technique which use low and high tube voltages and by processing pixel-by-pixel using visual C++. The contrast-enhanced image can be used to detect and observe defects within the electronic components.

3D Non-Rigid Registration for Abdominal PET-CT and MR Images Using Mutual Information and Independent Component Analysis

  • Lee, Hakjae;Chun, Jaehee;Lee, Kisung;Kim, Kyeong Min
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.311-317
    • /
    • 2015
  • The aim of this study is to develop a 3D registration algorithm for positron emission tomography/computed tomography (PET/CT) and magnetic resonance (MR) images acquired from independent PET/CT and MR imaging systems. Combined PET/CT images provide anatomic and functional information, and MR images have high resolution for soft tissue. With the registration technique, the strengths of each modality image can be combined to achieve higher performance in diagnosis and radiotherapy planning. The proposed method consists of two stages: normalized mutual information (NMI)-based global matching and independent component analysis (ICA)-based refinement. In global matching, the field of view of the CT and MR images are adjusted to the same size in the preprocessing step. Then, the target image is geometrically transformed, and the similarities between the two images are measured with NMI. The optimization step updates the transformation parameters to efficiently find the best matched parameter set. In the refinement stage, ICA planes from the windowed image slices are extracted and the similarity between the images is measured to determine the transformation parameters of the control points. B-spline. based freeform deformation is performed for the geometric transformation. The results show good agreement between PET/CT and MR images.

Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection (다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

SPECKLE IMAGING TECHNIQUE FOR LUNAR SURFACES

  • Kim, Jinkyu;Sim, Chae Kyung;Jeong, Minsup;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Sungsoo S.;Jin, Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.4
    • /
    • pp.87-97
    • /
    • 2022
  • Polarimetric measurements of the lunar surface from lunar orbit soon will be available via Wide-Field Polarimetric Camera (PolCam) onboard the Korea Pathfinder Lunar Orbiter (KPLO), which is planned to be launched in mid 2022. To provide calibration data for the PolCam, we are conducting speckle polarimetric measurements of the nearside of the Moon from the Earth's ground. It appears that speckle imaging of the Moon for scientific purposes has not been attempted before, and there is need for a procedure to create a "lucky image" from a number of observed speckle images. As a first step of obtaining calibration data for the PolCam from the ground, we search for the best sharpness measure for lunar surfaces. We then calculate the minimum number of speckle images and the number of images to be shift-and-added for higher resolution (sharpness) and signal-to-noise ratio.

Simultaneous velocity and temperature measurement of thermo-fluid flows by using particle imaging technique (화상처리기법을 이용한 온도장 및 속도장 동시 측정기법 개발)

  • Lee, Sang-Joon;Baek, Seung-Jo;Yoon, Jong-Hwan;Doh, Deog-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3334-3343
    • /
    • 1996
  • A quantitative flow visualization technique was developed to measure velocity and temperature fields simultaneously in a two-dimensional cross section of thermo-fluid flows. Thermochromic liquid crystal(TLC) particles are used as temperature sensor and velocity tracers. Illuminating a thermo-fluid flow with a thin sheet of white light, the reflected colors from the TLC particles in the flow were captured simultaneously by two CCD cameras; a 3-chip CCD color camera for temperature field measurement and a black and white CCD camera for velocity field measurement. Variations of temperature field were measured by using a HSI true color image processing system and TLC solution. The relationship between the hue values of TLC color image and real temperature was obtained and this calibration curve was used to measure the true temperature under the same camera and illumination condition. The velocity field was obtained by using a 2-frame PTV technique using the concept of match-probability to track true velocity vectors from two consecutive image frames. These two techniques were applied at the same time to the unsteady thermal-fluid flow in a Hele-Shaw cell to measure the temperature and velocity field simultaneously and some results are discussed.

A Parametric Image Enhancement Technique for Contrast-Enhanced Ultrasonography (조영증강 의료 초음파 진단에서 파라미터 영상의 개선 기법)

  • Kim, Ho Joon;Gwak, Seong Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.6
    • /
    • pp.231-236
    • /
    • 2014
  • The transit time of contrast agents and the parameters of time-intensity curves in ultrasonography are important factors to diagnose various diseases of a digestive organ. We have implemented an automatic parametric imaging method to overcome the difficulty of the diagnosis by naked eyes. However, the micro-bubble noise and the respiratory motions may degrade the reliability of the parameter images. In this paper, we introduce an optimization technique based on MRF(Markov Random Field) model to enhance the quality of the parameter images, and present an image tracking algorithm to compensate the image distortion by respiratory motions. A method to extract the respiration periods from the ultrasound image sequence has been developed. We have implemented the ROI(Region of Interest) tracking algorithm using the dynamic weights and a momentum factor based on these periods. An energy function is defined for the Gibbs sampler of the image enhancement method. Through the experiments using the data to diagnose liver lesions, we have shown that the proposed method improves the quality of the parametric images.

High-intensity focused ultrasound beam path visualization using ultrasound imaging (초음파 영상을 이용한 고강도 집중 초음파 빔 시각화)

  • Song, Jae Hee;Chang, Jin Ho;Yoo, Yang Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • In High-Intensity Focused Ultrasound (HIFU) treatment, effective localization of HIFU focus is important for developing a safe treatment plan. While Magnetic Resonance Imaging guided HIFU (MRIgHIFU) can visualize the ultrasound path during the treatment for localizing HIFU focus, it is challenging in ultrasound imaging guided HIFU (USIgHIFU). In the present study, a real-time ultrasound beam visualization technique capable of localizing HIFU focus is presented for USIgHIFU. In the proposed method, a short pulse, with the same center frequency of an imaging ultrasound transducer below the regulated acoustic intensity (i.e., Ispta < 720 mW/㎠), was transmitted through a HIFU transducer whereupon backscattered signals were received by the imaging transducer. To visualize the HIFU beam path, the backscattered signals underwent dynamic receive focusing and subsequent echo processing. From in vitro experiments with bovine serum albumin gel phantoms, the HIFU beam path was clearly depicted with low acoustic intensity (i.e., Ispta of 94.8 mW/㎠) and the HIFU focus was successfully localized before any damages were produced. This result indicates that the proposed ultrasound beam path visualization method can be used for localizing the HIFU focus in real time while minimizing unwanted tissue damage in USIgHIFU treatment.

Study on Enhancements to Ultrasonic Data Imaging Using Full Matrix Capture Technique (Full Matrix Capture 기법을 통한 초음파신호 영상화 향상 연구)

  • Lee, Tae-Hun;Yoon, Byung-Sik;Lee, Jeong-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.299-306
    • /
    • 2015
  • A conventional phased array system can control an ultrasonic beam electronically by adjusting the excitation time delay of individual elements in a multi-element probe and produce an ultrasonic image. In Contrast, full matrix capture (FMC) is a data acquisition process that allows receiving ultrasonic signals from one single shot of the phased array transducer element through all the other elements and captures the complete dataset from every possible transmit-receive combination. This FMC data can be used to create the ultrasonic image in post processing. It is possible to produce not only images equivalent to conventional phased array image but also total focusing method (TFM) images with improved resolution and sharpness, which is virtually focused at any point in a region of interest. In this paper, the system that can perform FMC by using a conventional phased array instrument is developed, and a study was conducted on the imaging algorithms to reconstruct sector B-scan and TFM images from FMC dataset.

Analysis on Optimal Approach of Blind Deconvolution Algorithm in Chest CT Imaging (흉부 컴퓨터단층촬영 영상에서 블라인드 디컨볼루션 알고리즘 최적화 방법에 대한 연구)

  • Lee, Young-Jun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.145-150
    • /
    • 2022
  • The main purpose of this work was to restore the blurry chest CT images by applying a blind deconvolution algorithm. In general, image restoration is the procedure of improving the degraded image to get the true or original image. In this regard, we focused on a blind deblurring approach with chest CT imaging by using digital image processing in MATLAB, which the blind deconvolution technique performed without any whole knowledge or information as to the fundamental point spread function (PSF). For our approach, we acquired 30 chest CT images from the public source and applied three type's PSFs for finding the true image and the original PSF. The observed image might be convolved with an isotropic gaussian PSF or motion blurring PSF and the original image. The PSFs are assumed as a black box, hence restoring the image is called blind deconvolution. For the 30 iteration times, we analyzed diverse sizes of the PSF and tried to approximate the true PSF and the original image. For improving the ringing effect, we employed the weighted function by using the sobel filter. The results was compared with the three criteria including mean squared error (MSE), root mean squared error (RMSE) and peak signal-to-noise ratio (PSNR), which all values of the optimal-sized image outperformed those that the other reconstructed two-sized images. Therefore, we improved the blurring chest CT image by using the blind deconvolutin algorithm for optimal approach.