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Abstract: The aim of this study is to develop a 3D registration algorithm for positron emission 
tomography/computed tomography (PET/CT) and magnetic resonance (MR) images acquired from 
independent PET/CT and MR imaging systems. Combined PET/CT images provide anatomic and 
functional information, and MR images have high resolution for soft tissue. With the registration 
technique, the strengths of each modality image can be combined to achieve higher performance in 
diagnosis and radiotherapy planning. The proposed method consists of two stages: normalized 
mutual information (NMI)-based global matching and independent component analysis (ICA)-
based refinement. In global matching, the field of view of the CT and MR images are adjusted to 
the same size in the preprocessing step. Then, the target image is geometrically transformed, and 
the similarities between the two images are measured with NMI. The optimization step updates the 
transformation parameters to efficiently find the best matched parameter set. In the refinement 
stage, ICA planes from the windowed image slices are extracted and the similarity between the 
images is measured to determine the transformation parameters of the control points. B-spline–
based freeform deformation is performed for the geometric transformation. The results show good 
agreement between PET/CT and MR images. 
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1. Introduction 

Image registration has been widely used for various 
clinical applications. In particular, registration between 
different imaging modalities, e.g., computed tomography 
(CT), positron emission tomography (PET), magnetic re-
sonance (MR), ultrasound, etc., is useful for more 
precisely diagnosing disease [1]. 

Recently, based on increases in cancer patients and 
advancements in imaging technologies, the demand for 
multimodality imaging systems has grown rapidly. The 
combined PET/CT system is the first multimodality 
imaging system that improves early detection of tumor 
volumes. With an anatomic image from CT and a 
functional image from a PET scan, oncologists can deduce 

the precise location of the tumor [2]. 
The combined PET/CT system, which can obtain both 

PET and CT images sequentially, shares the patient bed so 
the movement of the patient is minimized (this is a 
problematic parameter for registration). However, many 
studies report that registration of PET and CT images from 
the combined scanner is still required to some extent [3]. 

MR images produce better quality soft tissue images 
and fewer artifacts caused by metallic implants than CT 
images [4]. These advantages encouraged many resear-
chers to develop PET/MR systems [5]. However, the 
conventional PET system has used a photo multiplier tube 
(PMT) as its detector, which is not compatible with the 
strong magnets in MR. This incompatibility requires an 
alternative method, and stand-alone PET and MR systems 
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may eliminate these physical problems. 
In the Korea Institute of Radiological & Medical 

Sciences (KIRAMS), each of the combined PET/CT and 
stand-alone MR systems were set up independently in 
adjacent rooms. PET/CT and MR images of a patient were 
obtained sequentially so the time difference between each 
image could be minimized. The difference between the 
patient beds for each system creates a difference in the 
patient position, so software-based image registration is 
important in order to match the information. 

There are many methods for image registration. 
Manual registration is achieved by finding the same 
anatomic structures in both images. This is performed by 
clinical experts, so it is slow and tedious and generally 
corrects only for rigid misalignments. A software-based 
automatic approach helps to get more accurate results by 
implementing elastic image registration [3, 22, 23]. This 
approach is being studied by various research groups, and 
the effectiveness of the mutual information (MI)-based 
voxel method has been reported in many journals [1, 9, 11]. 
In these papers, most of the applications were brain images 
where the relatively simple rigid body model can be 
applied. Moreover, for the hierarchical (pyramid) registra-
tion method, which is generally used for block-wise 3D 
registration, MI had some limitations when the size of the 
image block became small. In addition, the discon-tinuity 
between the adjacent sub-blocks due to the different 
transformation parameters is also problematic. So we need 
to develop an additional registration algorithm that can 
make up for the weak points of the conventional method. 

Registration for brain images is usually solved by rigid 
body transformation because the brain is located inside the 
skull [15]. For abdomen registration, the organs are too 
flexible to be addressed with the same method, because 
they are non-rigidly transformed by the breath and position 
of the patient [6, 7]. Abdomen registration needs a more 
complex approach than brain registration, which requires 
only a simple transformation. For these reasons, and to get 
more precise abdominal registration results, we studied a 
salient feature-based registration method to overcome the 
drawbacks of the conventional method described above. 
As a method to extract features, independent component 
analysis (ICA) was explored. To improve the performance 
of the voxel method, particle swarm optimization (PSO) 
and GPU-based parallel processing was employed. 

The objective of this study is to develop an image 
registration algorithm for abdominal PET/CT and MR 
images that are acquired separately but sequentially. We 
report here the proposed 3D image registration algorithm 
and its experimental results. 

2. MATERIALS AND METHODS 

The proposed algorithm consists of two stages: 
normalized mutual information (NMI)-based global match-
ing and ICA-based refinement. A CT image acquired by 
PET/CT was used as a reference image. An MR image was 
used as a target image that was geometrically transformed 
to be compared with the reference image. After registration 
between CT and MR, the PET image was laid on the 

transformed MR image so that we achieved an aligned 
PET/MR image. In this method, we neglect the difference 
between the PET and CT images, which were taken with 
the patient using the same patient couch. 

2.1 NMI-based Global Matching 
The goal of this stage is to roughly match the images 

with the global information of the CT and MR images. The 
global registration stage consists of four steps (preprocess-
ing, geometric transformation, similarity measure, and 
optimization). 

First, in the preprocessing step, the data type and size 
of images from different systems are adjusted to a 
predetermined dimension. To extract the abdominal field 
of view (FOV) from the whole-body images, we clipped 
each image from the upper side of the lungs to the femoral 
heads manually. The clipped CT, PET, and MR images 
were transformed to fit into the predetermined system 
volume (128 × 128 × 128 voxels). In addition, a histogram 
equalization method was used to make two image sets 
have equivalent contrast [8]. 

In the transformation step, the target image was 
transformed by a 3D affine model. Translation, rotation, 
and scaling were performed with nine transformation 
parameters. While transforming the 3D target image, we 
used cubic linear interpolation, which is faster than spline-
based interpolation and generates smoother images than 
nearest neighbor interpolation. 

The transformed target image (CT) was compared with 
the reference image (MR) by quantifying the difference 
between the two images in the similarity measurement step. 
For the similarity figures, we investigated normalized 
mutual information (NMI) [10, 11], the mean absolute 
difference (MAD), and the correlation coefficient [12, 23]. 
We found that NMI performed better than the other 
methods for multimodality images [24]. 

Finally, the optimization step updates the transforma-
tion parameters so that the next iteration can produce better 
similarity. These steps are repeated until the metric 
converges within the predetermined range of difference 
from the previous iteration. In practice, the optimization 
step accelerates the algorithm significantly, compared to 
the greedy search approach. By updating the transforma-
tion parameters effectively, it helps us to find the optimal 
transformation parameter set without investigating all com-

Fig. 1. Block diagram of NMI-based global matching.
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binations of the parameters. We employed a particle swarm 
optimization (PSO) algorithm that was inspired by social 
behavior of birds flocking and fish schooling [13, 14]. 

PSO is based on an algorithm that assumes intelligent 
particles share their own results, and by updating the next 
movements of particles with the following equation: 

 
 V = W × V + C1 × rand() × PBest  (1) 

+ C2 × rand() × GBest 
 

where V is the velocity of a particle, rand() is a random 
function, PBest is the best value of the present step, GBest 
is the global best value of the swarm, and W, C1, and C2 
are weight factors. 

We adopted this optimization to find the parameter set 
of the transformation, which maximizes the similarity 
function. By doing these steps recursively, the best set of 
the transformation parameters that produces maximum 
NMI values is determined. Weight factors can affect the 
convergence time of the algorithm and the possibility of 
local minimum problems. In this study, the weights were 
empirically chosen via experimentation with a variety of 
data sets (W = 1.0, C1 = 0.7, and C2 = 1.0). 

 

2.2 ICA-based Refinement 
In this stage, we developed a feature-based registration 

model to improve the results of NMI-based global 
matching. In the global matching step, we transformed the 
target image via the affine transformation model so that we 
get generally matched abdominal CT and MR images. As 
we mentioned above, this conventional method, needs 
improvement. To supplement the limitations of the con-
ventional intensity-based methods, we explored an additio-
nal step, which extracts features based on indepen-dent 
component analysis followed by elastic trans-formation 
[15-18].  

To extract the feature information, we employed ICA, 
which is commonly used for blind source separation in 
signal processing and face detection in computer vision. 
ICA is a statistical method to extract components from the 
multidimensional random vector by maximizing the 
independence of each component [19, 20]. 

ICA is given by 
 

 y = Mx + l (2) 
 

where y is the mixed signal vector, x is the independent 

components of y, l is noise, and M is the estimating matrix. 
Even though noise l is discarded, the estimation of M and x 
is difficult, because we only know the y vector. However, 
using a condition where the x vector consists of indepen-
dent elements, the unknowns can be estimated.  

To have the results be more computationally efficient, 
we employed the FastICA algorithm [20], which is an 
approximation method for ICA. This method basically 
generates a new contrast function by minimizing the 
mutual information and estimating the multidimensional 
source with the projection pursuit method. FastICA has 
been used for general-purpose data analysis and is 10 to 
100 times faster than conventional ICA. The proposed ICA 
algorithm–based refinement step is summarized as follows. 

First, we picked a 2D image from the target 3D volume 
image and saved the target slice number as Star. Then we 
picked n image slices from the reference image volume 
(slices from Star-(n/2) to Star+(n/2-1)). With these selected 
images (n images from the reference and 1 image from the 
target) ICA is calculated.  

To measure the similarity of the features between target 
and reference images, we employed Euclidian distances. 
The reference slice, which has the minimum Euclidian 
distance from the target slice, was saved with its slice 
number (Sref). Fig. 3 illustrates ICA planes from the 
reference and target slices. In this example, reference 2 
(the dashed box) best matched the target slice. 

We processed this method for each x, y, and z axis. 
This process was performed for all three axes (i.e. x, y, and 
z directions) so that 64 control points (four points for each 
axis direction) were acquired and used as transformation 
parameters in the next step. 

The 3D slice numbers of each voxel image were 
converted to the 3D coordinates of the 64 control points. 
These coordinates of the control points inside each voxel 
image were used as a motion vector, so that the elastic 
transformation of the target image was conducted by free-

 

Fig. 2. Block diagram of ICA-based refinement. 

 

 

Fig. 3. Extracted feature from (a) reference slices and (b) the target slice. The dashed box indicates the best 
matching ICA slice of the target ICA slice, in this case, Sref = 2. 
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form deformation (FFD) [16, 17]. 

2.3 GPU-based Acceleration 
This image registration algorithm is a time-consuming 

process. To accelerate the processing time, parallel 
processing was applied. GPU-based acceleration has been 
widely used in a variety of applications because it is cost 
effective, easy to implement, and minimizes change in the 
original source codes. We used CUDA technology 
proposed by NVIDIA in both 3D affine transformation and 
free-form deformation, which are the most CPU-intensive 
processes in the proposed algorithm. We compare the 
results with and without parallel processing in Section 3. 

In short, the process using a GPU can be described as 
follows. 

(1) Define the three axes of the 3D image as the thread, 
block and ID of a grid for GPU processing. 

(2) Allocate GPU memory and copy the 3D data from 
host to GPU memory. 

(3) Calculate the coordinates of each transformed pixel 
by dividing a whole 3D affine transformation process into 
the multi-threads on the GPU. 

(4) Merge the resulting coordinates of each thread in 
GPU memory. 

(5) Copy the results from the GPU into host memory 
and free up GPU memory. 

 
The graphics processing unit that we used was the 

GeForce GTX 260, which has 216 processing cores and 
896MB of GDDR3 memory.  

2.4 Image Data 
We tested six image sets that consisted of five cases of 

non-Hodgkin's lymphoma (NHL) and one case of multiple 
myeloma (MM) scanned in KIRAMS. These data were 
obtained from six patients studied under the KIRAMS 
institutional review board–approved protocol for radio-
immunotherapy evaluation. As mentioned, PET and CT 
images were acquired continuously on a combined 
PET/CT scanner (Siemens Biograph6). Each CT and PET 
image measured 512 × 512 × 274-324 and 128 × 128 × 
274-324 voxels, respectively, and each slice of the images 
was a transverse view. The cubic voxel dimensions of the 
MR scanner (Siemens TrioTim 3T) were 364-379 × 831-
1127 × 115-120, and each image slice was a T1-weighted 
image of a coronal view. 

To match the different viewpoints between image sets, 
we transformed the axis of the MR images to a transverse 
view. 

3. EXPERIMENTAL RESULTS 

The proposed algorithm was implemented on a Linux 
machine with C++ and CUDA technology. To analyze the 
results easily, we also developed a 3D image viewer that 
can display the reference PET/CT, the target MR, and the 
resulting registered image in a window. It also has a 
function to change the viewpoint to coronal, transverse, 

and sagittal views. 

3.1 Particle Swarm Optimization 
In NMI-based matching, PSO exhibited significantly 

reduced processing times, compared with the greedy 
search algorithm. With greedy search, the total number of 
parameter sets to be evaluated is about 0.35 million (only 
five varieties for each parameter set), which requires about 
97 hours with an Intel Core i5 750 CPU and 8GB memory 
for a 128 × 128 × 128 pixel 3D XCAT [21] phantom 
image. In our experiments however, PSO took only 1.87 
hours for registration of the 3D images.  

Since PSO updates the next transformation parameters 
to calculate the cost function (i.e. NMI) by using a random 
number generator, the results of each registration may vary 
even when an experiment is performed. Thus, consistency 
in the results is one of the most important performance 
indicators in PSO. Although more iterations and particles 
in PSO produce more accurate results, we limited them to 
400 iterations and 12 particles to take into account the 
trade-offs between performance and execution time. We 
repeated the test five times with the same images to 
investigate the reliability of the algorithm. Fig. 4 shows the 
deviation from ground truth. The results indicate that the 
transformation parameters obtained by PSO are consistent, 
and have fewer than 10% small variations. 

3.2 NMI-based Global Matching 
The proposed registration algorithm consists of two 

independent registration methods, NMI-based global 
matching and ICA-based refinement. The resulting image 
sets with each method were evaluated independently.  

Fig. 5 shows the transverse view of the global matching 
results for two different patient cases. In these cases, the 
patient position and FOV were slightly different between 
reference and target images. The CT image and MR image 
show different organs and sizes, even in the same z-slice 
before registration. For case 1, the shape of the liver in the 

 

Fig. 4. Results of reproducibility test with PSO. Each 
plot represents the percentage error for 12 parameters 
of affine transformation (rotation: Ro, translation: Tr, 
scale: Sc and shear: Sh for three dimensions) using 
XCAT digital phantom image. 
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CT image (a) and the MR image (b) were different before 
registration, but after global matching (c), the size and 
shape of the liver were considerably well registered. For 
case 2, unlike the CT image (a), the liver is shown in the 
MR image (b). In the registered MR image (c), the liver 
disappeared, and the size of the heart is quite analogous to 
the CT image. 

3.3 ICA-based Refinement 
Fig. 6 shows the results of ICA-based fine adjustment. 

Even after the global registration process, the CT and 
global-matched MR images have some discrepancies. 
When the PET image is overlaid on the global-registered 
MR image, without the proposed refinement step, we still 
observe some misalignment in the PET/MR fusion image 
(a). Case 3 is a transverse image of the heart area. The wall 
of the left ventricle is left-sided in the global-registered 
fusion image (a). After the ICA-based refinement, the 
PET/MR image shows that the misalignment has been 
considerably corrected (b). Case 4 is an image set of a 
patient with a suspicious region at the lower side of the 
liver. After the refinement process (b), the lesion of the 
region of interest was successfully matched in the 
PET/MR fusion image.  

3.4 GPU-based Acceleration 
The CUDA architecture exhibited a significant reduc-

tion in processing time. In this study, we compared the 
processing time of a GPU (Geforce GTX 260) with that of 
a CPU (AMD X2 64). It took 3.86 CPU seconds to 
transform a 3D image (128 × 128 × 128). The processing 
time was dramatically reduced to 0.396 seconds with the 
GPU. It shows that GPU-based parallel processing turns 
out to be about 9.7 times faster than CPU-based pro-
cessing.  

4. CONCLUSION 

The aim of this study is to develop an image registra-
tion algorithm for abdominal PET/CT and stand-alone MR 
images. We developed a 3D elastic image registration 
algorithm that consists of NMI-based global matching and 
ICA-based refinement. 

The NMI-based global matching algorithm adopted 
affine parameters for geometric transformation and NMI 
for similarity measurement. For efficient updates of the 
affine parameters, a particle swarm optimization method 
was adopted. In ICA-based refinement, ICA feature 
planes were utilized and matched to determine the motion 
vectors of 64 control points in a 3D space. Based on the 
control points, we transformed the target image ela-
stically by B-spline–based freeform deformation. In 
addition, we accelerated the processing time via GPU-
based parallel processing with the CUDA architecture so 
the processing time of the 3D transformation is dra-
matically improved. 

To overcome shortcomings in the conventional 
intensity-based method, we developed an additional ICA-
based refinement step. Performance of this proposed 
hybrid method was verified by matching PET/CT and MR 
images. Moreover, the reliability of this method will 
enable the algorithm to be utilized for CT-CT registration 
as well as CT-MR registration in the future. Furthermore, 
we expect the proposed algorithm will be applied to 
various combinations of multimodality imaging applica-
tions. 
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