• Title/Summary/Keyword: Imaging Device

검색결과 619건 처리시간 0.259초

Utility Evaluation of Supportive Devices for Interventional Lower Extremity Angiography (인터벤션 하지 혈관조영검사를 위한 보조기구의 유용성 평가)

  • Kong, Chang gi;Song, Jong Nam;Jeong, Moon Taek;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • 제13권4호
    • /
    • pp.613-621
    • /
    • 2019
  • The purpose of this study is to evaluate the effectiveness of supportive devices which are for minimizing the patient's movement during lower extremity angiography and to verify image quality of phantom by analyzing of Mask image, DSA image and Roadmap image into SNR and CNR. As a result of comparing SNR with CNR of mask image obtained by DSA technique using the phantom alone and phantom placed on the supportive devices, there was no significant difference between about 0~0.06 for SNR and about 0~0.003 for CNR. The study showed about 0.11~0.35 for SNR and 0.016~0.031 for CNR of DSA imaging by DSA technique about only water phantom of the blood vessel model and the water phantom placed on the device. Analyzing SNR and CNR of Roadmap technique about water phantom on the auxiliary device (hardboard paper, pomax, polycarbonate, acrylic) and water phantom alone, there was no significant difference between 0.02~0.05 for SNR and 0.002~0.004 for CNR. In conclusion, there was no significant difference on image quality by using supportive devices made by hardboard paper, pomax, polycarbonate or acryl regardless of whether using supportive devices or not. Supportive devices to minimize of the patient's movement may reduce the total amount of contrast, exam-time, radiation exposure and eliminate risk factors during angiogram. Supportive devices made by hardboard paper can be applied easily during angiogram due to advantages of reasonable price and simple processing. It is considered that will be useful to consider cost efficiency and types of materials and their properties in accordance with purpose and method of the study when the operator makes and uses supportive devices.

Sequential traction of a labio-palatal horizontally impacted maxillary canine with a custom three-directional force device in the space of a missing ipsilateral first premolar

  • Yang, Shuliang;Yang, Xiao;Jin, Anting;Ha, Nayong;Dai, Qinggang;Zhou, Siru;Yang, Yiling;Gong, Xinyi;Hong, Yueyang;Ding, Qinfeng;Jiang, Lingyong
    • The korean journal of orthodontics
    • /
    • 제49권2호
    • /
    • pp.124-136
    • /
    • 2019
  • Orthodontic treatment is more complicated when both soft and hard tissues must be considered because an impacted maxillary canine has important effects on function and esthetics. Compared with extraction of impacted maxillary canines, exposure followed by orthodontic traction can improve esthetics and better protect the patient's teeth and alveolar bone. Therefore, in order to achieve desirable tooth movement with minimal unexpected complications, a precise diagnosis is indispensable to establish an effective and efficient force system. In this report, we describe the case of a 31-year-old patient who had a labio-palatal horizontally impacted maxillary left canine with a severe occlusal alveolar bone defect and a missing maxillary left first premolar. Herein, with the aid of three-dimensional imaging, sequential traction was performed with a three-directional force device that finally achieved acceptable occlusion by bringing the horizontally impacted maxillary left canine into alignment. The maxillary left canine had normal gingival contours and was surrounded by a substantial amount of regenerated alveolar bone. The 1-year follow-up stability assessment demonstrated that the esthetic and functional outcomes were successful.

Clinical Application of Dose Reconstruction Based on Full-Scope Monte Carlo Calculations: Composite Dose Reconstruction on a Deformed Phantom (몬테칼로 계산을 통한 흡수선량 재구성의 임상적 응용: 변형된 팬텀에서의 총제적 선량재구성)

  • Yeo, Inhwan;Xu, Qianyi;Chen, Yan;Jung, Jae Won;Kim, Jong Oh
    • Progress in Medical Physics
    • /
    • 제25권3호
    • /
    • pp.139-142
    • /
    • 2014
  • The purpose of this study was to develop a system of clinical application of reconstructed dose that includes dose reconstruction, reconstructed dose registration between fractions of treatment, and dose-volume-histogram generation and to demonstrate the system on a deformable prostate phantom. To achieve this purpose, a deformable prostate phantom was embedded into a 20 cm-deep and 40 cm-wide water phantom. The phantom was CT scanned and the anatomical models of prostate, seminal vesicles, and rectum were contoured. A coplanar 4-field intensity modulated radiation therapy (IMRT) plan was used for this study. Organ deformation was simulated by inserting a "transrectal" balloon containing 20 ml of water. A new CT scan was obtained and the deformed structures were contoured. Dose responses in phantoms and electronic portal imaging device (EPID) were calculated by using the XVMC Monte Carlo code. The IMRT plan was delivered to the two phantoms and integrated EPID images were respectively acquired. Dose reconstruction was performed on these images using the calculated responses. The deformed phantom was registered to the original phantom using an in-house developed software based on the Demons algorithm. The transfer matrix for each voxel was obtained and used to correlate the two sets of the reconstructed dose to generate a cumulative reconstructed dose on the original phantom. Forwardly calculated planning dose in the original phantom was compared to the cumulative reconstructed dose from EPID in the original phantom. The prescribed 200 cGy isodose lines showed little difference with respect to the "prostate" and "seminal vesicles", but appreciable difference (3%) was observed at the dose level greater than 210 cGy. In the rectum, the reconstructed dose showed lower volume coverage by a few percent than the plan dose in the dose range of 150 to 200 cGy. Through this study, the system of clinical application of reconstructed dose was successfully developed and demonstrated. The organ deformation simulated in this study resulted in small but observable dose changes in the target and critical structure.

Comparative evaluation for leaf position accuracy according to gantry angle variation in MLC quality assurance using electronic portal imaging device(EPID) and GafChromic EBT3 film (전자포탈영상장치(EPID)와 GafChromic EBT3 film을 이용한 다엽콜리메이터 정도관리 시 갠트리 각도 변화에 따른 엽의 위치 정확성 비교 평가)

  • Yang, Myung Sic;Park, Ju Kyeong;Lee, Seung Hun;Lee, Sun Young;Kim, Jung Soo;Kwon, Hyoung Cheol;Kim, Yang Su
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제29권2호
    • /
    • pp.83-91
    • /
    • 2017
  • Objectives: The purpose of this study was to evaluate the error of the leaf position accuracy of the MLC due to the gravity effect according to the gantry angle by using picket fence test using EPID and GafChromic EBT3 film. Materials and Methods: A 5 cm solid phantom was placed on the table and the SAD was set to 100 cm. The EBT3 film was placed exactly over the solid phantom and covered a 1.5 cm solid phantom and the picket fence test was performed. The EPID was measured under the same conditions as the EBT3 film at SID 100 cm. The gantry angles were measured at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$ in order to evaluate the position of the MLC according to the gantry angle. For the geometric evaluation of the MLC, the leaf position accuracy of the MLC was analyzed using the analysis program. Results: In case of EPID, when the gantry angle was changed to $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, the difference of the position errors of the leaves was 0.18 mm, 0.31 mm, 0.20 mm, 0.26 mm on the average and the maximum values of the errors were respectively 0.44 mm, 0.54 mm, 0.34 mm, 0.44 mm. In case of EBT3 film, when the gantry angle was changed to $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, the difference of the position errors of the leaves was 0.19 mm, 0.21 mm, 0.19 mm, 0.31 mm on the average and the maximum values of the errors were respectively 0.35 mm, 0.45 mm, 0.36 mm, 0.48 mm. Conclusion: In this study, we analyzed the position error of the leaf of the MLC according to the gantry angle, and confirmed the position error of the leaf by gravity effect. As a result of comparing the leaf position accuracy using EPID and EBT3 film according to the variation of gantry angle, a larger error occurred in the error analysis method using EPID than that of EBT3 film. Therefore, in the case of IMRT based on MLC, as well as verification of accurate dosimetry should be conducted, it is considered that the quality control and verification for the precise operation of the MLC will be needed. and it is necessary to compare and verify the method of analysis.

  • PDF

Changes of Radiation Dose and Image Quality Due to Additional Filtration Material in Computed Radiography (Computed Radiography에서 Additional Filtration Material에 따른 Radiation Dose와 Image Quality의 변화)

  • Kwon, Soon-Mu;Cho, Hyung-Wook;Kang, Yeong-Han;Kim, Boo-Soon;Kim, Jung-Su
    • Journal of radiological science and technology
    • /
    • 제37권4호
    • /
    • pp.239-246
    • /
    • 2014
  • Filter absorbs low-energy X-ray to increase the average energy and reduces patient exposure dose. This study investigates if the materials of Mo and W could be used for the digital imaging device CR by conducting image assessment and dose measurement of SNR, FOM and histogram. In addition, measurement of beam quality was conducted depending on the material of the filter, and at the same time, a proper combination of filters was examined depending on the change in tube voltage (kVp). In regard to entrance skin dose, Mo filter showed the dose reduction by 42~56%, compared to Cu filter. Moreover, Mo filter showed higher transmission dose by around 1.5 times than that of Cu filter. In image assessment, it was found that W was unsuitable to be used as a filter, whereas Mo could be used as a filter to reduce dose without decline in image quality at the tube voltage of 80 kVp or higher. As tube voltage increased, 2.0 mm Al+0.1 mm Mo almost had a similar histogram width to that of 2.0 mm Al+0.2 mm Cu. Therefore, Mo filter can be used at relatively high tube voltage of 80 kVp, 100 kVp and 120 kVp. The SNR of 2.0 mm Al+0.1 mm Mo did not show any significant difference from those of 2.0 mm Al+0.2 mm Cu and 2.0 mm Al+0.1 mm Cu. As a result, if Mo filter is used to replace Cu filter in general radiography, where 80 kVp or higher is used for digital radiation image, patient exposure dose can be reduced significantly without decline in image quality, compared to Cu filter. Therefore, it is believed that Mo filter can be applied to chest X-ray and high tube voltage X-ray in actual clinical practice.

An Estimation of the Efficiency and Satisfaction for EEG Practice Using the Training 10-20 Electrode System: A Questionnaire Survey (연습용 10-20 Electrode System을 이용한 뇌파검사 실습의 효율성과 만족도 평가)

  • Lee, Chang Hee;Kim, Dae Jin;Choi, Jeong Su;Lee, Jong-Woo;Lee, Min Woo;Cho, Jae Wook;Kim, Suhng Wook
    • Korean Journal of Clinical Laboratory Science
    • /
    • 제49권3호
    • /
    • pp.300-307
    • /
    • 2017
  • Electroencephalography (EEG) is distinct from other medical imaging tests in that it is a functional test that helps to diagnosis disorders related to the brain, such as epilepsy. The most important abilities for a medical technologist when performing an EEG are knowing the exact location of the electrode and recording the EEG wave clearly, except for artifacts. Although theoretical education and practical training are both included in the curriculum for improving these abilities, sufficient practical training has been lacking due to problems like expensive equipment and insufficient practical training time. We try to solve these issues by manufacturing the training 10-20 electrode system and by estimating the efficiency and satisfaction of the training 10-20 electrode system through a questionnaire. The time required for practical training using this system was $43.58{\pm}9.647min$, which proved to be efficient. The satisfaction score of participants who experienced curriculum practical training was improved from $7.21{\pm}2.285$ to $9.46{\pm}1.166$. Based on these findings, it is considered that practical training via the use of the training 10-20 electrode system will solve the problems, such as lack of equipment and insufficient practical training time. Nonetheless, to further improve the training 10-20 electrode system, it must overcome the limitations of developing a device capable of checking the actual brain waves and validating the exact location of electrode attachment.

Mapping and estimating forest carbon absorption using time-series MODIS imagery in South Korea (시계열 MODIS 영상자료를 이용한 산림의 연간 탄소 흡수량 지도 작성)

  • Cha, Su-Young;Pi, Ung-Hwan;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • 제29권5호
    • /
    • pp.517-525
    • /
    • 2013
  • Time-series data of Normal Difference Vegetation Index (NDVI) obtained by the Moderate-resolution Imaging Spectroradiometer(MODIS) satellite imagery gives a waveform that reveals the characteristics of the phenology. The waveform can be decomposed into harmonics of various periods by the Fourier transformation. The resulting $n^{th}$ harmonics represent the amount of NDVI change in a period of a year divided by n. The values of each harmonics or their relative relation have been used to classify the vegetation species and to build a vegetation map. Here, we propose a method to estimate the annual amount of carbon absorbed on the forest from the $1^{st}$ harmonic NDVI value. The $1^{st}$ harmonic value represents the amount of growth of the leaves. By the allometric equation of trees, the growth of leaves can be considered to be proportional to the total amount of carbon absorption. We compared the $1^{st}$ harmonic NDVI values of the 6220 sample points with the reference data of the carbon absorption obtained by the field survey in the forest of South Korea. The $1^{st}$ harmonic values were roughly proportional to the amount of carbon absorption irrespective of the species and ages of the vegetation. The resulting proportionality constant between the carbon absorption and the $1^{st}$ harmonic value was 236 tCO2/5.29ha/year. The total amount of carbon dioxide absorption in the forest of South Korea over the last ten years has been estimated to be about 56 million ton, and this coincides with the previous reports obtained by other methods. Considering that the amount of the carbon absorption becomes a kind of currency like carbon credit, our method is very useful due to its generality.

Comparison of the Efficacy of 2D Dosimetry Systems in the Pre-treatment Verification of IMRT (세기조절방사선치료의 환자별 정도관리를 위한 2차원적 선량계의 유용성 평가)

  • Hong, Chae-Seon;Lim, Jong-Soo;Ju, Sang-Gyu;Shin, Eun-Hyuk;Han, Young-Yih;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • 제27권2호
    • /
    • pp.91-102
    • /
    • 2009
  • Purpose: To compare the accuracy and efficacy of EDR2 film, a 2D ionization chamber array (MatriXX) and an amorphous silicon electronic portal imaging device (EPID) in the pre-treatment QA of IMRT. Materials and Methods: Fluence patterns, shaped as a wedge with 10 steps (segments) by a multi-leaf collimator (MLC), of reference and test IMRT fields were measured using EDR2 film, the MatriXX, and EPID. Test fields were designed to simulate leaf positioning errors. The absolute dose at a point in each step of the reference fields was measured in a water phantom with an ionization chamber and was compared to the dose obtained with the use of EDR2 film, the MatriXX and EPID. For qualitative analysis, all measured fluence patterns of both reference and test fields were compared with calculated dose maps from a radiation treatment planning system (Pinnacle, Philips, USA) using profiles and $\gamma$ evaluation with 3%/3 mm and 2%/2 mm criteria. By measurement of the time to perform QA, we compared the workload of EDR2 film, the MatriXX and EPID. Results: The percent absolute dose difference between the measured and ionization chamber dose was within 1% for the EPID, 2% for the MatriXX and 3% for EDR2 film. The percentage of pixels with $\gamma$%>1 for the 3%/3 mm and 2%/2 mm criteria was within 2% for use of both EDR2 film and the EPID. However, differences for the use of the MatriXX were seen with a maximum difference as great as 5.94% with the 2%/2 mm criteria. For the test fields, EDR2 film and EPID could detect leaf-positioning errors on the order of -3 mm and -2 mm, respectively. However it was difficult to differentiate leaf-positioning errors with the MatriXX due to its poor resolution. The approximate time to perform QA was 110 minutes for the use of EDR2 film, 80 minutes for the use of the MatriXX and approximately 55 minutes for the use of the EPID. Conclusion: This study has evaluated the accuracy and efficacy of EDR2 film, the MatriXX and EPID in the pre-treatment verification of IMRT. EDR2 film and the EPID showed better performance for accuracy, while the use of the MatriXX significantly reduced measurement and analysis times. We propose practical and useful methods to establish an effective QA system in a clinical environment.

Evaluate the implementation of Volumetric Modulated Arc Therapy QA in the radiation therapy treatment according to Various factors by using the Portal Dosimetry (용적변조회전 방사선치료에서 Portal Dosimetry를 이용한 선량평가의 재현성 분석)

  • Kim, Se Hyeon;Bae, Sun Myung;Seo, Dong Rin;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제27권2호
    • /
    • pp.167-174
    • /
    • 2015
  • Purpose : The pre-treatment QA using Portal dosimetry for Volumetric Arc Therapy To analyze whether maintaining the reproducibility depending on various factors. Materials and Methods : Test was used for TrueBeam STx$^{TM}$ (Ver.1.5, Varian, USA). Varian Eclipse Treatment planning system(TPS) was used for planning with total of seven patients include head and neck cancer, lung cancer, prostate cancer, and cervical cancer was established for a Portal dosimetry QA plan. In order to measure these plans, Portal Dosimetry application (Ver.10) (Varian) and Portal Vision aS1000 Imager was used. Each Points of QA was determined by dividing, before and after morning treatment, and the after afternoon treatment ended (after 4 hours). Calibration of EPID(Dark field correction, Flood field correction, Dose normalization) was implemented before Every QA measure points. MLC initialize was implemented after each QA points and QA was retried. Also before QA measurements, Beam Ouput at the each of QA points was measured using the Water Phantom and Ionization chamber(IBA dosimetry, Germany). Results : The mean values of the Gamma pass rate(GPR, 3%, 3mm) for every patients between morning, afternoon and evening was 97.3%, 96.1%, 95.4% and the patient's showing maximum difference was 95.7%, 94.2% 93.7%. The mean value of GPR before and after EPID calibration were 95.94%, 96.01%. The mean value of Beam Output were 100.45%, 100.46%, 100.59% at each QA points. The mean value of GPR before and after MLC initialization were 95.83%, 96.40%. Conclusion : Maintain the reproducibility of the Portal Dosimetry as a VMAT QA tool required management of the various factors that can affect the dosimetry.

  • PDF

Analyses of the Setup Errors using on Board Imager (OBI) (On Board Imager (OBI)를 이용한 Setup Error 분석에 대한 연구)

  • Kim, Jong-Deok;Lee, Haeng-O;You, Jae-Man;Ji, Dong-Hwa;Song, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제19권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Purpose: The accuracy and advantages of OBI(On Board Imager) against the conventional method like film and EPID for the setup error correction were evaluated with the analysis of the accumulated data which were produced in the process of setup error correction using OBI. Materials and Methods: The results of setup error correction using OBI system were analyzed for the 130 patients who had been planned for 3 dimensional conformal radiation therapy during March 2006 and May 2006. Two kilo voltage images acquired in the orthogonal direction were fused and compared with reference setup images. The setup errors in the direction of vertical, lateral, longitudinal axis were recorded and calculated the distance from the isocenter. The corrected setup error were analyzed according to the lesion and the degree of shift variations. Results: There was no setup error in the 41.5% of total analyzed patients and setup errors between 1mm and 5mm were found in the 52.3%. 6.1% patients showed the more than 5mm shift and this error were verified as a difference of setup position and the movement of patient in a treatment room. Conclusion: The setup error analysis using OBI in this study verified that the conventional setup process in accordance with the laser and field light was not enough to get rid of the setup error. The KV images acquired using OBI provided good image quality for comparing with simulation images and much lower patients' exposure dose compared with conventional method of using EPID. These advantages of OBI system which were confirmed in this study proved the accuracy and priority of OBI system in the process of IGRT(Image Guided Radiation Therapy).

  • PDF