Comparative evaluation for leaf position accuracy according to gantry angle variation in MLC quality assurance using electronic portal imaging device(EPID) and GafChromic EBT3 film

전자포탈영상장치(EPID)와 GafChromic EBT3 film을 이용한 다엽콜리메이터 정도관리 시 갠트리 각도 변화에 따른 엽의 위치 정확성 비교 평가

  • Yang, Myung Sic (Department of Radiation Oncology, Chonbuk National University Hospital) ;
  • Park, Ju Kyeong (Department of Radiation Oncology, Chonbuk National University Hospital) ;
  • Lee, Seung Hun (Department of Radiation Oncology, Chonbuk National University Hospital) ;
  • Lee, Sun Young (Department of Radiation Oncology, Institute for Medical Sciences, Chonbuk National University Medical School) ;
  • Kim, Jung Soo (Department of Radiation Oncology, Institute for Medical Sciences, Chonbuk National University Medical School) ;
  • Kwon, Hyoung Cheol (Department of Radiation Oncology, Institute for Medical Sciences, Chonbuk National University Medical School) ;
  • Kim, Yang Su (Department of Radiation Oncology, Chonbuk National University Hospital)
  • 양명식 (전북대학교 병원 방사선종양학과) ;
  • 박주경 (전북대학교 병원 방사선종양학과) ;
  • 이승훈 (전북대학교 병원 방사선종양학과) ;
  • 이선영 (전북대학교 의과대학 방사선종양학과) ;
  • 김정수 (전북대학교 의과대학 방사선종양학과) ;
  • 권형철 (전북대학교 의과대학 방사선종양학과) ;
  • 김양수 (전북대학교 병원 방사선종양학과)
  • Published : 2017.12.29

Abstract

Objectives: The purpose of this study was to evaluate the error of the leaf position accuracy of the MLC due to the gravity effect according to the gantry angle by using picket fence test using EPID and GafChromic EBT3 film. Materials and Methods: A 5 cm solid phantom was placed on the table and the SAD was set to 100 cm. The EBT3 film was placed exactly over the solid phantom and covered a 1.5 cm solid phantom and the picket fence test was performed. The EPID was measured under the same conditions as the EBT3 film at SID 100 cm. The gantry angles were measured at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$ in order to evaluate the position of the MLC according to the gantry angle. For the geometric evaluation of the MLC, the leaf position accuracy of the MLC was analyzed using the analysis program. Results: In case of EPID, when the gantry angle was changed to $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, the difference of the position errors of the leaves was 0.18 mm, 0.31 mm, 0.20 mm, 0.26 mm on the average and the maximum values of the errors were respectively 0.44 mm, 0.54 mm, 0.34 mm, 0.44 mm. In case of EBT3 film, when the gantry angle was changed to $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, the difference of the position errors of the leaves was 0.19 mm, 0.21 mm, 0.19 mm, 0.31 mm on the average and the maximum values of the errors were respectively 0.35 mm, 0.45 mm, 0.36 mm, 0.48 mm. Conclusion: In this study, we analyzed the position error of the leaf of the MLC according to the gantry angle, and confirmed the position error of the leaf by gravity effect. As a result of comparing the leaf position accuracy using EPID and EBT3 film according to the variation of gantry angle, a larger error occurred in the error analysis method using EPID than that of EBT3 film. Therefore, in the case of IMRT based on MLC, as well as verification of accurate dosimetry should be conducted, it is considered that the quality control and verification for the precise operation of the MLC will be needed. and it is necessary to compare and verify the method of analysis.

목 적: 본 연구에서는 EPID와 GafChromic EBT3 film을 이용하여 picket fence test를 시행하여 갠트리 각도에 따른 중력 효과로 인한 다엽콜리메이터의 엽의 위치 오차를 분석하여 정확성을 평가하고자 하였다. 대상 및 방법: 테이블에 5 cm의 고체 팬텀을 놓고 SAD를 100 cm이 되도록 설정하였다. EBT3 film을 고체 팬텀 위에 정확하게 놓이게 한 후 1.5 cm의 고체 팬텀을 놓고 picket fence test를 시행하였다. EPID는 선원 검출기간 거리 100 cm에서 EBT3 film과 같은 조건으로 측정했다. 갠트리 각도에 따른 다엽콜리메이터 이동 위치를 알아보기 위해 갠트리 각도 $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$에서 각각 측정하였다. 다엽콜리메이터의 기하학적 평가를 위해 분석 프로그램을 이용하여 다엽콜리메이터의 엽의 위치 정확성을 분석하였다. 결 과: EPID의 경우 갠트리 각도 $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$로 갠트리 각도를 변경했을 때 엽의 위치 오차는 각각 평균 0.18 mm, 0.31 mm, 0.20 mm, 0.26 mm였고, 오차의 최댓값은 각각 0.44 mm, 0.54 mm, 0.34 mm, 0.44 mm였다. EBT3 film은 갠트리 각도 $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$로 갠트리 각도를 변경했을 때 엽의 위치 오차는 각각 평균 0.19 mm, 0.21 mm, 0.19 mm, 0.31 mm였고, 오차의 최댓값은 각각 0.35 mm, 0.45 mm, 0.36 mm, 0.48 mm였다. 결 론: 본 연구는 갠트리 각도에 따른 다엽콜리메이터의 엽의 위치 오류를 분석해본 결과 중력효과에 의한 엽의 위치 오류를 확인하였고, EPID와 EBT3 film을 이용하여 갠트리 각도 변화에 따른 엽의 정확성을 비교한 결과 EPID을 이용한 오차 분석방법에서 EBT3 film보다 더 큰 오차가 발생했다. 따라서 다엽콜리메이터를 기반으로 하는 세기조절방사선치료의 경우 정확한 선량 조사에 대한 검증뿐만 아니라 다엽콜리메이터의 정확하고 정밀한 작동에 대한 정도관리와 분석방법에 대한 비교 및 검증이 필요할 것으로 사료된다.

Keywords

References

  1. Khan FM: The Physics of Radiation Therapy. 3rd edition, Williams & Wilkins, Philadelphia. MD 2003;481-506.
  2. Gary A. Ezzell, James M. Galvin, Daniel Low, Jatinder R. Palta, Isaac Rosen, Michael B. Sharpe, Ping Xia, Ying Xiao, Lei Xing,Cedric X. Yu: Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee, Medical Physics 2003;30(8):2089-2115. https://doi.org/10.1118/1.1591194
  3. Harish K Malhotra, Sanjay Raina, Jaiteerth S Avadhani, Matthew B Podgorsak: Technical and dosimetric considerations in IMRT treatment planning for large target volumes, Journal of Applied Clinical Medical Physics 2005;6(4):77-87. https://doi.org/10.1120/jacmp.v6i4.2129
  4. Tejinder Kataria, Sheh Rawat, SN Sinha, PS Negi, Charu Garg, NK Bhalla, RK Munja: Intensity modulated radiotherapy in abdominal malignancies: our experience in reductiong the dose to normal structures as compared to the gross tumor, Journal Cancer Research Therpeutics 2006;2(4):161-165. https://doi.org/10.4103/0973-1482.29825
  5. Jin Beom Chung, Jae Sung Kim, Sung Whan Ha, Sung-Joon Ye: Statistical analysis of IMRT dosimetry quality assurance measurements for local delivery guideline, Radiation Oncology 2011;6:1-8. https://doi.org/10.1186/1748-717X-6-1
  6. Jean M. Moran, Melanie Dempsey, Avraham Eisbruch, Benedick A. Fraass, James M. Galvin, Geoffrey S. Ibbott, Lawrence B. Marks: Safety considerations for IMRT: Executive summary, Practical Radiation Oncology 2011;1:190-195. https://doi.org/10.1016/j.prro.2011.04.008
  7. Jeong Woo Lee, Semie Hong, Yon Lae Kim, Kyoung Sik Choi, Jin Beom Chung, Doo Hyun Lee, Tae Suk Suh: Effects of static dosimetric leaf gap on MLCbased small beam dose distribution for intensitymodulated radiosurgery, Journal of Applied Clinical Medical Physics 2007;8(4):54-65. https://doi.org/10.1120/jacmp.v8i4.2397
  8. Kayla N. Kielar, Ed Mok, Annie Hsu, Lei Wang, Gary Luxton: Verification of dosimetric accuracy on the TrueBeam STx: Rounded leaf effect of the high definition MLC, Medical Physics 2012;39(10):6360-6371. https://doi.org/10.1118/1.4752444
  9. Eric E. Klein, Joseph Hanley, John Bayouth, Fang-Fang Yin, William Simon, Sean Dresser, Christopher Serago, Francisco Aguirre, Lijun Ma, Bijan Arjomandy, Chihray Liu, Carlos Sandin, Todd Holmes: Task Group 142 report: Quality assurance of medical accelerators, Medical Physics 2009;36(9):4197-4212. https://doi.org/10.1118/1.3190392
  10. Bayouth John E, Wendt D, Morrill SM: MLC quality assurance techniques for IMRT applications, Medical Physics 2003;30(5):743-750. https://doi.org/10.1118/1.1564091
  11. Thomas LoSasso: IMRT delivery performance with a varian multileaf collimator, International Journal of Radiation Oncology Biology Physics 2008;70(1):85-88.
  12. Chen Shou, Spiridon Spirou, Thomas LoSasso: Testing of dynamic multileaf collimation, Medical Physics 1996;23(5):635-641. https://doi.org/10.1118/1.597699
  13. Maria Sastre-Padro, Uulke A van der Heide, Hans Welleweerd: An accurate calibration method of the multileaf collimator valid for conformal and intensity modulated radiation treatments, Physics in Medicine and Biology 2004;49(12):2631-2643. https://doi.org/10.1088/0031-9155/49/12/011
  14. Rangel Alejandra, Peter Dunscombe: Tolerances on MLC leaf position accuracy for IMRT delivery with a dynamic MLC, Medical Physics 2009;36(7):3304-3309. https://doi.org/10.1118/1.3134244
  15. Sen Bai, Guangjun Li, Maojie Wang, Qinfeng Jiang, Yingjie Zhang: Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity modulated radiotherapy plans for nasopharyngeal carcinoma, Medical dosimetry 2013;38(2):143-147. https://doi.org/10.1016/j.meddos.2012.10.002
  16. Jeong woo Lee, Jin Beom Chung, Doo Hyun Lee, Jeong Hoon Park, Bo Young Choe, Tae Suk Suh, Hong Seok Jang, Semie Hong, Byung Moon Park, Min Young Kang, Kyoung Sik Choi, You Hyun Kim: Discrepancy of Intensity Modulation Radiation Therapy Dose Delivery due to the Dose-Dynamic Multi-Leaf Collimator Gravity Effect. Journal of the Korean Physical Society 2008;53(6):3436-3443. https://doi.org/10.3938/jkps.53.3436
  17. Iori SUMIDA, Hajime YAMAGUCHI, Hisao KIZAKI, Masahiko KOIZUMI, Toshiyuki OGATA, Yutaka TAKAHASHI and Yasuo YOSHIOKA: Quality assurance of MLC leaf position accuracy and relative dose effect at the MLC abutment region using an electronic portal imaging device, Journal of Radiation Research 2012;53:798-806. https://doi.org/10.1093/jrr/rrs038
  18. Marzena MOR AWSK A-ACZYNSK A, Ryszard DA BROWS KI, Izabela DROZ DYK, Pawel KUKOLOWICZ: Testing of a sag of a dosimetry system rotating with a gantry using the interplay effect between detector motion and MLC motion, Polish Journal of Medical Physics and Engineering 2017;23(2):21-28. https://doi.org/10.1515/pjmpe-2017-0005
  19. 권구원: 방사선 치료 시 피부선량 및 심부선량 백분율 측정을 위한 초박형 광섬유 방사선량계의 개발, 학위 논문(석사) 2016.
  20. Mu G, Ludlum E, Xia P.:Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer, Physics in Medicine and Biology 2008;53(1):77-88. https://doi.org/10.1088/0031-9155/53/1/005
  21. Pejman Rowshanfarzad, Conor K McGarry, Michael P Barnes, Mahsheed Sabet, Martin A Ebert: An EPID- based method for comprehensive verification of gantry, EPID and the MLC carriage positional accuracy in Varian linacs during arc treatments, Radiation Oncology 2014;9:249. https://doi.org/10.1186/s13014-014-0249-8
  22. Angelo Filippo Monti, Chiara Berlusconi, Stefania Gelosa: Gantry angle dependence in IMRT pretreatment patient-specific quality controls, Physica Medica 2013;29:204-207. https://doi.org/10.1016/j.ejmp.2012.01.002
  23. Yinghui Li, Lixin Chen, Jinhan Zhu, Bin Wang, Xiaowei Liu: A quantitative method to the analysis of MLC leaf position and speed based on EPID and EBT3 film for dynamic IMRT treatment with different types of MLC, Journal of applied clinical medical physics 2017;18(4):106-115. https://doi.org/10.1002/acm2.12102