• Title/Summary/Keyword: Imagery analysis

Search Result 664, Processing Time 0.032 seconds

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

Application of Remote Sensing and Geographic Information System in Forest Sector (원격탐사와 지리정보시스템의 산림분야 활용)

  • Lee, Woo-Kyun;Kim, Moonil;Song, Cholho;Lee, Sle-gee;Cha, Sungeun;Kim, GangSun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.27-42
    • /
    • 2016
  • Forest accounts for almost 64 percents of total land cover in South Korea. For inventorying, monitoring, and managing such large area of forest, application of remote sensing and geographic information system (RS/GIS) technology is essential. On the basis of spectral characteristics of satellite imagery, forest cover and tree species can be classified, and forest cover map can be prepared. Using three dimensional data of LiDAR(Light Detection and Ranging), tree location and tree height can be measured, and biomass and carbon stocks can be also estimated. In addition, many indices can be extracted using reflection characteristics of land cover. For example, the level of vegetation vitality and forest degradation can be analyzed with VI (vegetation Index) and TGSI (Top Grain Soil Index), respectively. Also, pine wilt disease and o ak w ilt d isease c an b e e arly detected and controled through understanding of change in vegetation indices. RS and GIS take an important role in assessing carbon storage in climate change related projects such as A/R CDM, REDD+ as well. In the field of climate change adaptation, impact and vulnerability can be spatio-temporally assessed for national and local level with the help of spatio-temporal data of GIS. Forest growth, tree mortality, land slide, forest fire can be spatio-temporally estimated using the models in which spatio-temporal data of GIS are added as influence variables.

Matching and Geometric Correction of Multi-Resolution Satellite SAR Images Using SURF Technique (SURF 기법을 활용한 위성 SAR 다중해상도 영상의 정합 및 기하보정)

  • Kim, Ah-Leum;Song, Jung-Hwan;Kang, Seo-Li;Lee, Woo-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.431-444
    • /
    • 2014
  • As applications of spaceborne SAR imagery are extended, there are increased demands for accurate registrations for better understanding and fusion of radar images. It becomes common to adopt multi-resolution SAR images to apply for wide area reconnaissance. Geometric correction of the SAR images can be performed by using satellite orbit and attitude information. However, the inherent errors of the SAR sensor's attitude and ground geographical data tend to cause geometric errors in the produced SAR image. These errors should be corrected when the SAR images are applied for multi-temporal analysis, change detection applications and image fusion with other sensor images. The undesirable ground registration errors can be corrected with respect to the true ground control points in order to produce complete SAR products. Speeded Up Robust Feature (SURF) technique is an efficient algorithm to extract ground control points from images but is considered to be inappropriate to apply to SAR images due to high speckle noises. In this paper, an attempt is made to apply SURF algorithm to SAR images for image registration and fusion. Matched points are extracted with respect to the varying parameters of Hessian and SURF matching thresholds, and the performance is analyzed by measuring the imaging matching accuracies. A number of performance measures concerning image registration are suggested to validate the use of SURF for spaceborne SAR images. Various simulations methodologies are suggested the validate the use of SURF for the geometric correction and image registrations and it is shown that a good choice of input parameters to the SURF algorithm should be made to apply for the spaceborne SAR images of moderate resolutions.

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF

Analysis of Abnormal High Temperature Phenomena in Cixi-si of China using Landsat Satellite Images (Landsat 위성영상을 이용한 중국 츠시시의 이상 고온 현상 분석)

  • Park, Joon-Kyu;Lee, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.34-40
    • /
    • 2017
  • In recent years, global warming has caused abnormal weather phenomena. Unusually cold climates have occurred all around the world, including cold waves in the Northeastern United States, Beijing, China, Southern India, and Pakistan, as well as floods in Chile, Kazakhstan, and Vietnam. China has been experiencing a nationwide heat wave annually since the year 2013, especially in the southern region. In this study, we used Landsat 8 OLI TIRS sensor images from four periods to analyze the characteristics of abnormal high temperature phenomena in Cixi-si, China. Land cover classification was performed using 10 bands of satellite imagery, and the surface temperature was extracted using the 10th thermal band. The results of the land cover classification of the fourth period show the changes of the time series quantitatively. The results of the surface temperature calculation provided both the average overall temperature and the average temperature of individual items. The temperature was found to be highest for buildings, followed by grassland, forest, agricultural land, water systems, and tidal flats in the same period.

Analysis of Forest Change Characteristics in North Korea using Multi-temporal Satellite Images (다시기 위성영상을 이용한 북한 전체의 산림 변화 특성 분석)

  • Lee, Hyoung-Kyu;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.633-638
    • /
    • 2018
  • We are constantly hearing about the seriousness of food shortages in North Korea through various media reports. Recently, the severity of the problem has increased, and international organizations and relief organizations have become increasingly concerned. Due to the shortage of food and firewood, residents illegally cut trees in the mountains and, as a result, North Korea has become the third fastest-growing area of forest degradation in Asia. However, since North Korea cannot directly measure the extent of forest degradation, remote sensing techniques using satellite imagery have to be applied. The purpose of this study was to analyze the characteristics of forest change in North Korea, in order to understand the severity of the forest degradation problem. For this purpose, Landsat 5 TM and Landsat 8 OLI TIRS satellite images were acquired and classified. As a result, it was found that the forests have turned into wilderness in the Nampo City and Pyongyang municipalities, while the wasteland has changed into forests in the north of Yanggangdo. In addition, the total forested area of the whole region decreased by $4,166.22km^2$, the residential area decreased by $2,017.03km^2$, and the amount of agricultural land increased by $6,625.74km^2$, which is similar to the amount of forested area lost, although the difference in the overall area of the forests between 2017 and 2006 was small.

Mapping of Drought Index Using Satellite Imagery (위성영상을 활용한 가뭄지수 지도제작)

  • Chang, Eun-Mi;Park, Eun-Ju
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.3-12
    • /
    • 2004
  • It is necessary to manage water resources in rural areas in order to achieve proper development of new water resources, sustainable usage and reasonable distribution. This paper aims to analyze multi-temporal Landsat-7 ETM+data for soil moisture that is essential for crops in Ahnsung area. The ETM data was also fused with KOMPSAT-1 images in order to be used as backdrop watershed maps at first. Multi-temporal Images showed also the characteristics of soil moisture distribution. Images taken in April showed that rice paddy had as low reflectance as artificial features. Compared with April scenes, those taken in Hay and June showed wetness index increased in the rice paddies. The mountainous areas have almost constant moisture index, so the difference between the dates was very low while reservoirs and livers had dramatic changes. We can calculate total potential areas of distribution of moisture content within the basin and estimate the areas being sensitive to drought. Finally we can point out the sites of small rice paddies lack of water and visualize their distribution within the same basin. It can be said that multi-temporal Landsat-7 ETM+ and KOMPSAT data can be used to show broad drought with quick and simple analysis. Drought sensitiveness maps may enable the decision makers on rural water to evaluate the risk of drought and to measure mitigation, accompanied with proper data on the hydrological and climatic drought.

  • PDF

DETECTION AND MASKING OF CLOUD CONTAMINATION IN HIGH-RESOLUTION SST IMAGERY: A PRACTICAL AND EFFECTIVE METHOD FOR AUTOMATION

  • Hu, Chuanmin;Muller-Karger, Frank;Murch, Brock;Myhre, Douglas;Taylor, Judd;Luerssen, Remy;Moses, Christopher;Zhang, Caiyun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1011-1014
    • /
    • 2006
  • Coarse resolution (9 - 50 km pixels) Sea Surface Temperature satellite data are frequently considered adequate for open ocean research. However, coastal regions, including coral reef, estuarine and mesoscale upwelling regions require high-resolution (1-km pixel) SST data. The AVHRR SST data often suffer from navigation errors of several kilometres and still require manual navigation adjustments. The second serious problem is faulty and ineffective cloud-detection algorithms used operationally; many of these are based on radiance thresholds and moving window tests. With these methods, increasing sensitivity leads to masking of valid pixels. These errors lead to significant cold pixel biases and hamper image compositing, anomaly detection, and time-series analysis. Here, after manual navigation of over 40,000 AVHRR images, we implemented a new cloud filter that differs from other published methods. The filter first compares a pixel value with a climatological value built from the historical database, and then tests it against a time-based median value derived for that pixel from all satellite passes collected within ${\pm}3$ days. If the difference is larger than a predefined threshold, the pixel is flagged as cloud. We tested the method and compared to in situ SST from several shallow water buoys in the Florida Keys. Cloud statistics from all satellite sensors (AVHRR, MODIS) shows that a climatology filter with a $4^{\circ}C$ threshold and a median filter threshold of $2^{\circ}C$ are effective and accurate to filter clouds without masking good data. RMS difference between concurrent in situ and satellite SST data for the shallow waters (< 10 m bottom depth) is < $1^{\circ}C$, with only a small bias. The filter has been applied to the entire series of high-resolution SST data since1993 (including MODIS SST data since 2003), and a climatology is constructed to serve as the baseline to detect anomaly events.

  • PDF

Availability Analysis on Detection of Small Scale Gas Emission Facilities using Drone Imagery (드론영상을 이용한 소규모 가스 배출시설 탐지 가능성 분석)

  • Shin, Jung-Il;Kim, Ik-Jae;Hwang, Dong-Hyun;Lee, Jong-Min;Lim, Seong-Ha
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.213-223
    • /
    • 2017
  • Recently, the air quality of South Korea has deteriorated and public interest has been increasing. Various observation means are used for the monitoring of the atmospheric environment, but it relies on the experience and judgment of the observer in the absence of spatial information on the emission facilities. The purpose of this study was to determine the availability of using drones for monitoring air pollutant emission facilities. A texture transformation method was applied to the drone ortho image to detect the small gas emission facility and the slope data calculated by the digital surface model (DSM) was used to reduce the false alarm ratio. As a result, it shows the possibility of using drones in the detection of small gas emission facilities by showing about 80% of positive detection ratio and 40% of false alarm ratio. In the future, various researches are required to the improve positive detection ratio and the reduction of the false alarm ratio. Based on these results, it is necessary to construct a database including 3D spatial information of air pollutant emission facilities.

The Environmental and Economic Effects of Green Area Loss on Urban Areas (도시지역에서의 녹지상실의 환경적 경제적 효과)

  • Kim, Jae-Ik;Yeo, Chang-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.20-29
    • /
    • 2006
  • Modeling urban climate caused by land use conversion is critical for human welfare and sustainable development, but has hampered because detailed information on urban characteristics is hard to obtain. With the advantage of satellite observations and the new statistical boundary system, this paper measures the economic and environmental effects of green area loss due to land use conversion in urban areas. To perform this purpose, data were collected from the various sources basic statistical unit data from the National Statistical Office, digital maps from the National Geographic Information Institute, satellite images, and field surveys when necessary. All data (maps and attributes) are built into the geographic information system (GIS). This paper also utilizes Landsat TM 5 imagery of Daegu city to derive vegetation index and to measure average surface temperature. The satellite data were examined using standard image processing software, ERDAS IMAGINE, and the results of the digital processing were presented with ARCVIEW(v.3.3). SAS package was used to perform statistical analyses. This study presents that there exists a strong relationship between land use change and climatic change as well as land price change. Based on results of the analysis, this paper suggests that planners should implement effective tools and policies of urban growth management to detect environmental quality and to make right decisions on policies concerning smart urban growth.

  • PDF