DOI QR코드

DOI QR Code

Matching and Geometric Correction of Multi-Resolution Satellite SAR Images Using SURF Technique

SURF 기법을 활용한 위성 SAR 다중해상도 영상의 정합 및 기하보정

  • Kim, Ah-Leum (Department of Avionics, Korea Aerospace University) ;
  • Song, Jung-Hwan (Department of Avionics, Korea Aerospace University) ;
  • Kang, Seo-Li (Department of Avionics, Korea Aerospace University) ;
  • Lee, Woo-Kyung (Department of Avionics, Korea Aerospace University)
  • 김아름 (한국항공대학교항공전자공학과) ;
  • 송정환 (한국항공대학교항공전자공학과) ;
  • 강서리 (한국항공대학교항공전자공학과) ;
  • 이우경 (한국항공대학교항공전자공학과)
  • Received : 2014.03.18
  • Accepted : 2014.08.13
  • Published : 2014.08.31

Abstract

As applications of spaceborne SAR imagery are extended, there are increased demands for accurate registrations for better understanding and fusion of radar images. It becomes common to adopt multi-resolution SAR images to apply for wide area reconnaissance. Geometric correction of the SAR images can be performed by using satellite orbit and attitude information. However, the inherent errors of the SAR sensor's attitude and ground geographical data tend to cause geometric errors in the produced SAR image. These errors should be corrected when the SAR images are applied for multi-temporal analysis, change detection applications and image fusion with other sensor images. The undesirable ground registration errors can be corrected with respect to the true ground control points in order to produce complete SAR products. Speeded Up Robust Feature (SURF) technique is an efficient algorithm to extract ground control points from images but is considered to be inappropriate to apply to SAR images due to high speckle noises. In this paper, an attempt is made to apply SURF algorithm to SAR images for image registration and fusion. Matched points are extracted with respect to the varying parameters of Hessian and SURF matching thresholds, and the performance is analyzed by measuring the imaging matching accuracies. A number of performance measures concerning image registration are suggested to validate the use of SURF for spaceborne SAR images. Various simulations methodologies are suggested the validate the use of SURF for the geometric correction and image registrations and it is shown that a good choice of input parameters to the SURF algorithm should be made to apply for the spaceborne SAR images of moderate resolutions.

위성 SAR 영상의 활용이 증가하면서 영상의 해석 및 융합을 위한 정밀 기하보정에 대한 필요성이 높아지고 있다. 특히 광역감시 목적으로 활용되기 위해 서로 다른 해상도를 갖는 SAR 영상간 정보융합도 활발해지고 있다. 일반적으로 SAR 영상의 기하보정은 위성의 궤도 및 자세정보를 활용하여 수행할 수 있지만 SAR 센서의 궤도 및 시스템 오차, 대상지형 특성에 의한 왜곡으로 인해 추가적인 보정이 필요하게 된다. SAR 영상을 통한 변화탐지나 타 영상과의 융합에 적용하기 위해서는 기하 오차 보정이 반드시 선행되어야 한다. 이를 위해 다수의 지상 기준점을 선정하고 이를 포함하는 기준 영상과 비교하여 원본 영상에서 대응점을 찾는 방식으로 정밀 기하보정을 수행할 수 있다. Speeded Up Robust Feature (SURF) 기법은 쉽고 빠르게 영상의 기준점을 찾을 수 있지만 상대적으로 해상도가 낮고 스펙클 잡음에 영향을 받는 SAR 영상에서는 활용하기가 어렵다고 알려져 있다. 본 논문에서는 SURF 기법을 위성 SAR 영상에 적용할 때 발생할 수 있는 오차를 추출하고 영상 특성에 따른 성능 변화를 분석하였다. SURF 알고리즘의 적용이 가능한 입력 변수의 적정 범위를 제시하고 그에 따른 영상 정합의 오차를 분석하여 중저해상도의 위성 SAR 영상에 대해서도 SURF 기법을 통한 기하 보정 및 영상 정합이 적용될 수 있음을 검증하였다.

Keywords

References

  1. Bay, H., T. Tuytelaars, and L.V. Gool, 2006. Surf: Speeded up robust features, Proc. of 2009 European Conference on Computer Vision, Graz, Austria, May 7-13, Vol. 3951, pp. 404-417.
  2. Fischler, M.A. and R.C Bolles, 1981. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Communications of the ACM, Vol.24 pp.381-395. https://doi.org/10.1145/358669.358692
  3. Han, Y., 2013. Automatic image-to-image registration between high-resolution multi-sensor satellite data in urban areas, Doctorate thesis, Seoul University
  4. Han, Y., Y. Byun, T. Chae, and Y. Kim, 2011. Automatic Registration between KOMPSAT-2 and TerraSAR-X Images, Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography, 39: 667-675 https://doi.org/10.7848/ksgpc.2011.29.6.667
  5. Harris, C. and M. Stephens, 1988. A Combined Corner and Edge Detector, Proc. of Fourth Alvey Vision Conf., pp. 147-151.
  6. Jensen, J., D. Cowen, W. Narumalani, O. Weatherbee, and J. Althausen, 1993. An Evaluation of Coast Watch Change Detection Protocol in South Carolina, Photogrammetric Engineering & Remote Sensing, 59: 1039-1046.
  7. Kang, S.C., I. Whoang, and K.N. Choi, 2009. A Scheme for Matching Satellite Images Using SIFT., Korean Society for Internet Information, 10: 13-23.
  8. Lee, K.S., D. Kim, S. Rho, and E. Hwang, 2012. Improving Matching Performance of SURF Using Color and Relative Position, The Journal of Korea Navigation Institute, 16: 394-400. https://doi.org/10.12673/jkoni.2012.16.2.394
  9. Lindeberg, T. 1998. Feature detection with automatic scale selection, International Journal of Computer Vision, 30: 79-116. https://doi.org/10.1023/A:1008045108935
  10. Liu, R. and Y. Wang, 2009. SAR Image Matching based on Speeded Up Robust Feature, Proc. of Global Congress on Intelligent Systems, Xiamen, 19-21 May, Vol.4, pp.518-522.
  11. Lowe, D. 2004. Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60: 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  12. Mikolajczyk, K. and C. Schmid, 2001. Indexing based on scale invariant interest points, Proc. of International Conference Computer Vision, Vancouver, BC, Vol.1, pp.525-531.
  13. Pritt, M.D. and K.J. LaTourette, 2011. Automated Registration of Synthetic Aperture Radar Imagery to LiDAR, Proc. of Applied Imagery Pattern Recognition Workshop (AIPR)2010 IEEE 39th, Washington, DC, 13-15 Oct. pp. 1-6
  14. Schwind, P., S. Suri, P. Reinartz, and A. Seibert, 2010. Applicability of the SIFT operator to geometric SAR image registration, International Journal of Remote Sensing, 20 April, 31: 1959-1980. https://doi.org/10.1080/01431160902927622
  15. Shi, J. and C. Tomasi, 1994. Good features to track, Proc. of Computer Vision and Pattern Recognition (CVPR) '94, 1994 IEEE Computer Society Conference on, Seattle, WA, 21-23 Jun, pp 593-600.
  16. Tian, X. and C. Wang, 2011. Extraction of object features from high resolution SAR images based on SURF features, Proc. of International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, 24-29 July, pp. 1802-1805.
  17. Vidyadharan, V. and S. Surendran, 2012. Automatic Image Registration using SIFT-NCC, Proc. of Special Issue of International Journal of Computer Applications on Advanced Computing and Communication Technologies for HPC Applications, Tamilnadu, India, June, pp.29-32.
  18. Wessel, B., M. Huber, and A. Roth, 2007. Automatic image-to-image registration of near real-time SAR images, Proc. of (CD-ROM) Envisat symposium 2007, Montreux, Switzerland, 23-27 April.
  19. Yoo, S.H., 2011. Analysis of registration methodologies using high resolution SAR imagery, Master's Thesis, Younsei University.