• Title/Summary/Keyword: Image modality

Search Result 165, Processing Time 0.024 seconds

Development of Novel on-line Landweber Algorithm for Image Reconstruction in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 영상 복원을 위한 새로운 on-line Landweber 알고리즘 개발)

  • Kim, Bong Seok;Kim, Sin;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.293-299
    • /
    • 2012
  • Electrical impedance tomography is an imaging modality for determining the electrical properties inside a domain. Small currents are injected and the resulting voltages are measured through the electrodes. The internal electrical properties are reconstructed based on these voltage and current data. In this paper, a novel on-line Landweber algorithm was developed to fast estimate the resistivity distribution in the inverse calculation. Additionally, to enhance the reconstruction performance, a step-length was computed from the eigenvalue of the weighting matrix. The numerical experiments have been performed to evaluate the reconstruction performance of the proposed method.

Online Image Reconstruction Using Fast Iterative Gauss-Newton Method in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 빠른 반복적 가우스-뉴턴 방법을 이용한 온라인 영상 복원)

  • Kim, Chang Il;Kim, Bong Seok;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.83-90
    • /
    • 2017
  • Electrical impedance tomography is a relatively new nondestructive imaging modality in which the internal conductivity distribution is reconstructed based on the injected currents and measured voltages through electrodes placed on the surface of a domain. In this paper, a fast iterative Gauss-Newton method is proposed to increase the spatial resolution as well as reduce the inverse computational time in the inverse problem, which could be applied to online binary mixture flow applications. To evaluate the reconstruction performance of the proposed method, numerical experiments have been carried out and the results are analyzed.

Heterogeneous Face Recognition Using Texture feature descriptors (텍스처 기술자들을 이용한 이질적 얼굴 인식 시스템)

  • Bae, Han Byeol;Lee, Sangyoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.208-214
    • /
    • 2021
  • Recently, much of the intelligent security scenario and criminal investigation demands for matching photo and non-photo. Existing face recognition system can not sufficiently guarantee these needs. In this paper, we propose an algorithm to improve the performance of heterogeneous face recognition systems by reducing the different modality between sketches and photos of the same person. The proposed algorithm extracts each image's texture features through texture descriptors (gray level co-occurrence matrix, multiscale local binary pattern), and based on this, generates a transformation matrix through eigenfeature regularization and extraction techniques. The score value calculated between the vectors generated in this way finally recognizes the identity of the sketch image through the score normalization methods.

Multimodal Attention-Based Fusion Model for Context-Aware Emotion Recognition

  • Vo, Minh-Cong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.18 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • Human Emotion Recognition is an exciting topic that has been attracting many researchers for a lengthy time. In recent years, there has been an increasing interest in exploiting contextual information on emotion recognition. Some previous explorations in psychology show that emotional perception is impacted by facial expressions, as well as contextual information from the scene, such as human activities, interactions, and body poses. Those explorations initialize a trend in computer vision in exploring the critical role of contexts, by considering them as modalities to infer predicted emotion along with facial expressions. However, the contextual information has not been fully exploited. The scene emotion created by the surrounding environment, can shape how people perceive emotion. Besides, additive fusion in multimodal training fashion is not practical, because the contributions of each modality are not equal to the final prediction. The purpose of this paper was to contribute to this growing area of research, by exploring the effectiveness of the emotional scene gist in the input image, to infer the emotional state of the primary target. The emotional scene gist includes emotion, emotional feelings, and actions or events that directly trigger emotional reactions in the input image. We also present an attention-based fusion network, to combine multimodal features based on their impacts on the target emotional state. We demonstrate the effectiveness of the method, through a significant improvement on the EMOTIC dataset.

Evaluation on the Usefulness of Ultrasound Image Speckle Reduction Using Total Variation Denoising (TVD) Method in Laplacian Pyramid (라플라시안 피라미드 기반 총변동 잡음제거 기법을 이용한 초음파 영상 스펙클 제거 유용성 평가)

  • Moon, J.H.;Choi, D.H.;Lee, S.Y.;Tae, Ki-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.140-146
    • /
    • 2016
  • The ultrasound imaging in medical diagnosis has become a popular modality because of its safe, noninvasive, portable, relatively inexpensive, and provides a real-time image formation. However, usefulness of ultrasound imaging is at times limited due to the presence of signal-dependent noise like as speckle. Therefore, noise reduction is very important, as various types of noise generated limits the effectiveness of medical image diagnosis. This paper introduces a speckle noise reduce algorithm using total variation denoising (TVD) in Laplacian pyramid. With this method, speckle is removed by TVD of bandpass ultrasound images in Laplacian pyramid domain. For TVD in each pyramid layer, a ${\lambda}$ is selected by trial-and-error method. The visual comparison of despeckled 'in vivo' ultrasound images from pancreas shows that the proposed method could effectively preserve edges and detailed structures while thoroughly suppressing speckle. For a Simulated B-mode image, contrast-to-noise-ratio (CNR) and signal-to-noise-ratio (SNR) were obtained like 4.65 dB and 14.11 dB, respectively. The results show that the proposed method can conduct better than some of the existing methods in terms of the CNR and the SNR.

Modulation Transfer Function with Aluminum Sheets of Varying Thickness (다양한 두께의 알루미늄 판을 이용한 MTF 측정에 관한 연구)

  • Rhee, Dong Joo;Kim, Me Young;Moon, Young Min;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.55-63
    • /
    • 2016
  • We studied the method to gain a clear LSF using a thick aluminum sheet and to acquire the spatial resolution value with a high accuracy for a low spatial resolution imaging modality. In this study, aluminum sheets with thicknesses varying from 0.3 mm to 1.2 mm were tested to derive a modulation transfer function (MTF) for the oversampling and non-oversampling methods. The results were evaluated to verify the feasibility of the use of thick sheets for periodic quality assurance. Oversampling was more accurate than non-oversampling, and an aluminum sheet with a correction factor less than 2 at the cut-off frequency, which was less than 0.8 mm in this case, was confirmed to be suitable for MTF measurements. Therefore, MTF derivation from a thick aluminum sheet with thickness correction is plausible for a medical imaging modality.

Exploring Nursing Education Modality for Facilitating Undergraduate Students' Critical Thinking: Focus Group Interview Analysis (비판적사고 함양을 위한 효율적 학부간호교육 방안 모색)

  • Chang, Sung Ok;Kong, Eun Suk;Kim, Chun Gil;Kim, Hee Kyung;Song, Mi Soon;Ahn, Soo Yeon;Lee, Young Whee;Cho, Myung Ok;Choi, Kyung Sook;Kim, Nam Cho
    • Korean Journal of Adult Nursing
    • /
    • v.25 no.2
    • /
    • pp.125-135
    • /
    • 2013
  • Purpose: This study was conducted to explore nursing education modality for facilitating undergraduate students' critical thinking within the Korean nursing education context. Methods: Data were collected from four group interviews from two focus groups, which were composed of six nursing professors in each group. Data were analyzed using qualitative content analysis. Results: Five themes with 13 sub-themes involving 10 categories were delineated. The five themes were managing shared resources, a supportive system in preparing qualified faculty, reflective thinking (self-directed learning), theory courses for understanding nursing resources, and clinical practicum for exercising critical thinking. Conclusion: A nursing educational model for facilitating critical thinking within Korean context was suggested. This could be used as an accelerator in developing nursing undergraduate course programs for critical thinking in Korea.

Diagnostic Ability of High-definition Imaging Using Ultraslim Endoscopes in Early Gastric Cancer

  • Sugita, Tomomi;Suzuki, Sho;Ichijima, Ryoji;Ogura, Kanako;Kusano, Chika;Ikehara, Hisatomo;Gotoda, Takuji;Moriyama, Mitsuhiko
    • Journal of Gastric Cancer
    • /
    • v.21 no.3
    • /
    • pp.246-257
    • /
    • 2021
  • Purpose: It is unclear whether high-definition (HD) imaging improves visibility and diagnostic ability in early gastric cancer (EGC) compared with standard-definition (SD) imaging. We aimed to compare the diagnostic performance and visibility scores of HD and SD ultraslim endoscopes in EGC. Materials and Methods: We used HD and SD ultraslim endoscopes to obtain 60 images with similar compositions of gastric environments. Of the 60 images, 30 showed EGC (15 images for each modality) and 30 showed no EGC (15 images for each modality). Seventeen endoscopists evaluated the presence and location of the lesions in each image. Diagnostic ability was compared between modalities. The color difference between a lesion and the surrounding mucosa (ΔE) was measured and compared between the modalities. Results: The ability of HD to detect EGC was significantly higher than that of SD (accuracy: 80.8% vs. 71.6%, P=0.017; sensitivity: 94.9% vs. 76.5%, P<0.001; positive predictive value, 76.2% vs. 55.3%, P<0.001; and negative predictive value (NPV), 94.1% vs. 73.5%, P<0.001). The ability of HD to determine the horizontal extent of EGC was significantly higher than that of SD (accuracy: 71.0% vs. 57.8%, P=0.004; sensitivity: 75.3% vs. 49.0%, P<0.001; NPV, 72.9% vs. 55.9%, P<0.001; and area under the curve: 0.891 vs. 0.631, P=0.038). The mean ΔE was significantly higher for HD than for SD (10.3 vs. 5.9, P=0.011). Conclusions: The HD ultraslim endoscope showed a higher diagnostic performance in EGC than the SD endoscope because it provided good color contrast.

Raw-data Processing Schemes in the Spotlight-mode SAR(Synthetic Aperture Radar) (Spotlight-mode SAR(Synthetic Aperture Radar)에서의 Raw-data Processing 기법 분석)

  • 박현복;최정희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.501-504
    • /
    • 2000
  • The classical image reconstruction for stripmap SAR is the range-Doppler imaging. However, when the spotlight SAR system was envisioned, range-Bowler imaging fumed out to fail rapidly in this SAR imaging modality. What is referred to as polar format processing, which is based on the plane wave approximation, was introduced for imaging from spotlight SAR data. This paper has been studied for the raw data processing schemes in the spotlight-mode synthetic aperture radar. we apply the wavefront reconstruction scheme that does not utilize the approximation in spotlight-mode SAR imaging modelity, and compare the performance of target imaging with the polar format inversion scheme.

  • PDF

Optical Property Measurements of Optical Phantoms and Honan Tissues Using Frequency-Domain Diffuse Optical Tomography (주파수 영역 확산광 단층촬영 장치를 이용한 광 팬텀 및 인체조직의 광 계수 측정)

  • Ho, Dong-Su;Kwon, Ki-Woon;Eom, Gi-Yun;Lee, Seung-Duk;Kim, Beop-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.229-234
    • /
    • 2007
  • Diffuse optical tomography (DOT) is a relatively new medical imaging modality which uses near infrared light to image large-sized tissues noninvasively. We constructed a frequency-domain DOT system to measure the optical properties of optical phantoms and human tissues. The FD-DOT uses the intensity-modulated infrared light source that illuminates the biological tissues. The phase shift and modulation changes at each detector site are separately processed to measure the optical properties. The absorption and scattering coefficients are separately estimated using inverse algorithms.