The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.
Purpose: Recent advancements in artificial intelligence (AI), particularly tools such as ChatGPT developed by OpenAI, a U.S.-based AI research organization, have transformed the healthcare and education sectors. This study investigated the effectiveness of ChatGPT in answering dentistry exam questions, demonstrating its potential to enhance professional practice and patient care. Materials and Methods: This study assessed the performance of ChatGPT 3.5 and 4 on U.S. dental exams - specifically, the Integrated National Board Dental Examination (INBDE), Dental Admission Test (DAT), and Advanced Dental Admission Test (ADAT) - excluding image-based questions. Using customized prompts, ChatGPT's answers were evaluated against official answer sheets. Results: ChatGPT 3.5 and 4 were tested with 253 questions from the INBDE, ADAT, and DAT exams. For the INBDE, both versions achieved 80% accuracy in knowledge-based questions and 66-69% in case history questions. In ADAT, they scored 66-83% in knowledge-based and 76% in case history questions. ChatGPT 4 excelled on the DAT, with 94% accuracy in knowledge-based questions, 57% in mathematical analysis items, and 100% in comprehension questions, surpassing ChatGPT 3.5's rates of 83%, 31%, and 82%, respectively. The difference was significant for knowledge-based questions(P=0.009). Both versions showed similar patterns in incorrect responses. Conclusion: Both ChatGPT 3.5 and 4 effectively handled knowledge-based, case history, and comprehension questions, with ChatGPT 4 being more reliable and surpassing the performance of 3.5. ChatGPT 4's perfect score in comprehension questions underscores its trainability in specific subjects. However, both versions exhibited weaker performance in mathematical analysis, suggesting this as an area for improvement.
Park, Jimin;Seo, Wanhyuk;Seo, Dong-Hee;Yun, Tae-Sup
Journal of the Korean Geotechnical Society
/
v.40
no.4
/
pp.69-79
/
2024
Field geotechnical data are obtained from various field and laboratory tests and are documented in geotechnical investigation reports. For efficient design and construction, digitizing these geotechnical parameters is essential. However, current practices involve manual data entry, which is time-consuming, labor-intensive, and prone to errors. Thus, this study proposes an automatic data extraction method from geotechnical investigation reports using image-based deep learning models and text-mining techniques. A deep-learning-based page classification model and a text-searching algorithm were employed to classify geotechnical investigation report pages with 100% accuracy. Computer vision algorithms were utilized to identify valid data regions within report pages, and text analysis was used to match and extract the corresponding geotechnical data. The proposed model was validated using a dataset of 205 geotechnical investigation reports, achieving an average data extraction accuracy of 93.0%. Finally, a user-interface-based program was developed to enhance the practical application of the extraction model. It allowed users to upload PDF files of geotechnical investigation reports, automatically analyze these reports, and extract and edit data. This approach is expected to improve the efficiency and accuracy of digitizing geotechnical investigation reports and building geotechnical databases.
Seungri Yoon;Minju Shin;Jin Hyun Kim;Ho Jeong Jeong;Junyoung Park;Tae In Ahn
Journal of Bio-Environment Control
/
v.33
no.1
/
pp.63-70
/
2024
This study explored computer vision methods using the OpenCV open-source library to characterize the phenotypes of various horticultural crops. In the case of tomatoes, image color was examined to assess ripeness, while support vector machine (SVM) and histogram of oriented gradients (HOG) methods effectively identified ripe tomatoes. For sweet pepper, we visualized the color distribution and used the Gaussian mixture model for clustering to analyze its post-harvest color characteristics. For the quality assessment of netted melons, the LAB (lightness, a, b) color space, binary images, and depth mapping were used to measure the net patterns of the melon. In addition, a combination of depth and color data proved successful in identifying flowers of different sizes and distances in cucumber greenhouses. This study highlights the effectiveness of these computer vision strategies in monitoring the growth and development, ripening, and quality assessment of fruits and vegetables. For broader applications in agriculture, future researchers and developers should enhance these techniques with plant physiological indicators to promote their adoption in both research and practical agricultural settings.
Journal of the Korean Institute of Landscape Architecture
/
v.39
no.3
/
pp.51-63
/
2011
The purpose of this study is to create a landscape image that considers the selection of techniques that can enhance landscape reproduction in streetscape evaluation using 3 dimensional simulations and to evaluate ways to verify similarities and the psychological changes on the part of users by season. In the comparison of technique, the Low(apply normal map) technique was selected for the natural representation of trees in a near and middle view and the Plane technique was selected for the distant view. As the result of the verification, all indicators of physical similarity were evaluated over 4.50 points and most indicators of psychological similarity were found to have no difference except for indicators of 'disordered orderly' and 'dirty - clean'. According to the results of analyzing the landscape simulation by season, images of 'bright', 'beautiful', and 'static', etc., were evaluated high for the spring streetscape. The images of 'open', 'refresh', and 'animate' appeared high in summer and images of 'warm' and 'dark' were found to be high in fall. On the other hand, all images were evaluated as low except for the 'orderly' image. In the preference of streetscape by season, summer and spring were highly preferred at 5.01 and 4.98 with winter as the lowest at 3.48. As the results of the analysis of preference factor, the spring streetscape was found to be a major influence in preference by 0.540 in 'aesthetics'. In the case of summer, 'order' was found to be high at 0.417 while influences in preference included 'variety' and 'aesthetics' in fall and 'variety', 'aesthetics', and 'order' in winter. A determination of suitable spatial planning using a comparative analysis of various city streets will be enabled through the methods of this study.
Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
Progress in Medical Physics
/
v.23
no.1
/
pp.62-69
/
2012
The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.
Jeong, Hyun Keun;Jeong, Hyun Do;Nam, Ki Chang;Kim, Ho Chul
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.9
/
pp.117-124
/
2015
In this paper, we introduce how to control TR, TE physical MR parameters for managing $H_1$ spin's SI(Signal Intensity) which is combined with gadolinium following administration MR agent in T1 effect for diagnostic usefulness. we used MRI phantom made with 0.5 mol Gadoteridol. This phantom was scanned by FSE sequence with different TR, TE parameters. In this study, to make T1 effect, TR was 200, 250, 300, 350, 400, 450, 500, 550, 600 msec. In addition to, TE was 6.2, 12.4, 18.6, 21.6 msec. The results were as follows ; Each RSP(Reaction Starting Point) was 100, 50, 40, 30 mmol in TE 6.2, 12.4, 18.6, 21.6 msec being irrelevant to TR. In MPSI(Max Peak Signal Intensity), 4 mmol was showed in TR 200 msec while peak signal was decreased to low concentration mol in TR 250-600 msec. In terms of RA(Reaction Area), the highest SI was TE 6.2 msec in TR 200-600msec. According to the study, we are able to recognize it is possible to control enhance rates by managing TR and TE of MR parameters; moreover, we expect that enhanced T1 image in MR clinical field can be performed in a practical way with this quantitative data.
A curriculum of study demands a change as period of time and society evolve. Therefore, at this point where changes are required, this study is to analyze and evaluate the curriculums which will enhance and improve current studies as a preceding stage. The research was based on the survey by groups of education experts and 19 universities with current curriculum of study in radiologic science, and their references. The study was focused on the scope of work by radiologic technologist, change of college systems, academic research about radiologic science, and the improvement and the future of radiologic science field in perspective to globalization and the digital era. In terms of work scope, angiography and interventional radiology at 6 to 8 schools, fluoroscopy at 4 schools, ultrasound and practices at 6 schools, magnetic resonance image at 2 schools were found to be unestablished. The basic medical subjects, humuan physiology, human anatomy and practices, medical terminology courses were set up at most schools; however, pathology at 5 schools, image anatomy at 6 schools, clinical medicine at 11 schools were yet opened. Among the basic science and engineering subjects, general biology and its practices at 11 schools, general physics and its practices at 14 schools, and general chemistry and its practices at 8 schools were established which is about a half from a total number of schools. Only 4-5 schools established digital subjects such as, health computer, computer programming, PACS which are the basic major subjects. In order to provide academic improvement in radiologic science, digitalized education and globalization, and basis for future-oriented education for the field of radiologic science, including expanded scope of work, it is acknowledged that curriculums that are opened and run at each school need to be standardized. Therefore, the need for introduction of certificate for the radiologic science education courses are suggested.
Kim, Eun-Mi;Kwon, Jin-O;Kang, Chang-Wan;Chun, Jung-Hwa
Journal of the Korean Association of Geographic Information Studies
/
v.16
no.4
/
pp.79-90
/
2013
The altitude range of habitats in which Fairy Pitta inhabited in 1960s is different from the present in Jeju Island. We studied on the habitat environment to understand the causes of difference through the comparison of satellite image data(Landsat) between 1975 and 2002, the literature review in relation to habitats, vegetations, and forest landscapes. The area of below 600m asl.(above sea level) where is mainly Fairy Pitta inhabited at the present with a lot of forests, was massive pasture with small isolated forests nearby valley. The forests were broad-leaved evergreen forests, and second forests with poor condition in the size and forest structure. The forests around 700m asl. were also second forests with approximately 3m height trees. The forests from 800m to 1300m asl. were also disturbed by mushroom cultivation by local people. The authors believe that Fairy Pitta could not inhabited in the area above 1300m because of the poor forest conditions in the size and structure in which consist of Ilex crenata, Rhododendron mucronulatum var. ciliatum and coppice forests. Therefore it might be possible that the best forests for the Fairy Pitta habitat were located in the area of 1,000m to 1,300m above sea level in 1960s. Compared to present habitats, forests at 100m up to 800m above sea level, the authors believe that the size of habitats were smaller with less population of Fairy Pitta. Since 1960s the forest landscape of Jeju Island has been improved successfully, and because of that the population of Fairy Pitta also has been increased. To protect the Fairy Pitta and habitats in Jeju Island, it is suggested that sustainable forest management focusing on the species composition and stand structure maintain or enhance the biodiversity.
Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.