Browse > Article
http://dx.doi.org/10.5573/ieie.2015.52.9.117

Gadoteridol's Signal Change according to TR, TE Parameters in T1 Image  

Jeong, Hyun Keun (Department fo Medical Imaging of Engineering. The Graduate School of Bio-Medical Science, Korea University)
Jeong, Hyun Do (Korean Society for Cognitive & Biological Psychology)
Nam, Ki Chang (Department of Medical Engineering, Dongguk University College of Medicine)
Kim, Ho Chul (Department of Radiological Science, Eulji University)
Publication Information
Journal of the Institute of Electronics and Information Engineers / v.52, no.9, 2015 , pp. 117-124 More about this Journal
Abstract
In this paper, we introduce how to control TR, TE physical MR parameters for managing $H_1$ spin's SI(Signal Intensity) which is combined with gadolinium following administration MR agent in T1 effect for diagnostic usefulness. we used MRI phantom made with 0.5 mol Gadoteridol. This phantom was scanned by FSE sequence with different TR, TE parameters. In this study, to make T1 effect, TR was 200, 250, 300, 350, 400, 450, 500, 550, 600 msec. In addition to, TE was 6.2, 12.4, 18.6, 21.6 msec. The results were as follows ; Each RSP(Reaction Starting Point) was 100, 50, 40, 30 mmol in TE 6.2, 12.4, 18.6, 21.6 msec being irrelevant to TR. In MPSI(Max Peak Signal Intensity), 4 mmol was showed in TR 200 msec while peak signal was decreased to low concentration mol in TR 250-600 msec. In terms of RA(Reaction Area), the highest SI was TE 6.2 msec in TR 200-600msec. According to the study, we are able to recognize it is possible to control enhance rates by managing TR and TE of MR parameters; moreover, we expect that enhanced T1 image in MR clinical field can be performed in a practical way with this quantitative data.
Keywords
MR parameter; TR; TE; Gadolinium; Gadoteridol;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 HK. Jeong, H. Jung, and H. Kim, "Quantitative Analysis of GBCA Reaction by Mol Concentration Change on MRI Sequence", The Institute of Electronics and Information Engineers, vol.52, pp.182-192, Feb, 2015.   DOI   ScienceOn
2 E. Hagberg, and K. Scheffler, "Effect of r(1) and r(2) relaxivity of gadolinium-based contrast agents on the T(1)-weighted MR signal at increasing magnetic field strengths", ContrastMediaMolImagingvol.8, no.6, pp. 456-65, Nov-Dec, 2013.   DOI
3 H. S. Thomsen, S. K. Morcos, T. Almen, M. F. Bellin, M. Bertolotto, G. Bongartz, O. Clement, P. Leander, G. Heinz-Peer, P. Reimer, F. Stacul, A. van der Molen, J. A. Webb, and E. C. M. S. Committee, "Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines", EurRadiol,vol.23,no.2,pp.307-18,Feb,2013.   DOI   ScienceOn
4 S. K. Morcos, "Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition?", BrJRadiol,vol.80,no.950,pp.73-6, Feb, 2007.   DOI   ScienceOn
5 C. Zhu, U. Sadat, A. J. Patterson, Z. Teng, J. H. Gillard, and M. J. Graves, "3D high-resolution contrast enhanced MRI of carotid atheroma--a technical update", MagnResonImaging, vol.32, no.5, pp.594-7, Jun, 2014.
6 S. J. Ahn, M. R. Yoo, S. H. Suh, S. K. Lee, K. S. Lee, E. J. Son, and T. S. Chung, "Gadolinium enhanced 3D proton density driven equilibrium MR imaging in the evaluation of cisternal tumor and associated structures: comparison with balanced fast-field-echo sequence", PLoSOne, vol.9, no.7, pp.e103215, 2014.   DOI
7 R. Jablonowski, D. Nordlund, M. Kanski, J. Ubachs, S. Koul, E. Heiberg, H. Engblom, D. Erlinge, H. Arheden, and M. Carlsson, "Infarct quantification using 3D inversion recovery and 2D phase sensitive inversion recovery; validation in patients and ex vivo", BMCCardiovascDisord, vol.13, pp.110, 2013.   DOI   ScienceOn
8 H. Fukuoka, T. Hirai, T. Okuda, Y. Shigematsu, A. Sasao, E. Kimura, T. Hirano, S. Yano, R. Murakami, and Y. Yamashita, "Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T", AJNRAmJNeuroradiol, vol.31,no.5, pp.868-73, May, 2010.   DOI