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Abstract: The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial Revised:  August 16, 2024

for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, Accepted: August 26, 2024
and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors Published: August 31, 2024
can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and
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and multispectral sensors emphasizing the importance of accounting for these factors to enhance the X
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reliability of reflectance data in agricultural applications. An overview of the fundamentals of multispectral
sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review
highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance
data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%,
affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial
for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as
water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and
agricultural assessments. During the COVID-19 lockdown, reduced atmospheric interference improved
the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged
as the most stable indices, providing consistent measurements across different lighting conditions.
Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with
changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance
due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change,
highlighting the complexity of environmental impacts on remote sensing data. This review indicated
the importance of precisely managing environmental factors to maintain the integrity of VIs calculations.
Explaining the relationship between environmental variables and multispectral sensors offers valuable
insights for optimizing the accuracy and reliability of remote sensing data in various agricultural
applications.
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1. Introduction

Remote sensing is the process of acquiring information about an
object or phenomenon without making physical contact, typically
through the use of satellites, drones, or aircraft equipped with
sensors (Janga et al., 2023). Remote sensing in agriculture
involves the application of various devices and sensors to gather
data over time, then analyze to assess crop and yield conditions,
enabling farmers to make informed changes for maximum
output (Sishodia et al., 2020). The technology helps detect
common threats like pest infestations and weeds early, allowing
timely countermeasures, and it is adaptable to different land areas
and crop types, ensuring comprehensive agricultural monitoring
and management (Karunathilake et al.,, 2023).

The development of remote sensing technology has significantly
enhanced the ability to observe and understand the complex
dynamics of the earths surface. By systematically gathering
data from a distance, remote sensing technology has become
essential for monitoring environmental changes, assessing land
cover variations, and studying diverse agricultural ecosystems
(Awokuse and Xie, 2015). Multispectral imagery, a key technique
in remote sensing, collects data across various wavelengths of
the electromagnetic spectrum. This method captures detailed
information from multiple spectral bands, allowing for a
comprehensive analysis of the object’s surface (Lim et al., 2024).

Investigating the influence of environmental conditions on the
precision of multispectral imaging, particularly in the calculation
of vegetation indices (VIs), is essential for advancing this application
in remote sensing. To enhance the understanding and application
of VIs, it is crucial to consider the fusion of spectral band
information from unmanned aerial vehicle (UAV), ground, and
satellite-based multispectral imaging systems (MIS). Researchers
have explored the fusion of multispectral imagery and derived
VIs for various applications, such as machine learning algorithms
for ground classification and monitoring vegetation across
diverse environments (Zhang et al., 2021; Maimaitijiang et al,,
2020). Additionally, spectral indices derived from multispectral
remote sensing parameters, particularly VIs, are widely used
to monitor earth system dynamics, highlighting the importance
of multispectral imagery in agricultural and environmental
research.

Multispectral imagery, which captures data across multiple
spectral bands, offers extensive information beyond what the
human eye can perceive. This capability is particularly valuable
in vegetation monitoring, where calculating VIs has become
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fundamental for assessing the health (Kurbanov and Zakharova,
2020), density (Gitelson, 2004), and vigor (Selvaraj et al., 2021)
of crops and plants. The prolific use of indices such as the
Normalized Difference Vegetation Index (NDVI) and the
Enhanced Vegetation Index (EVI) signifies their importance
in applications ranging from ecological research to precision
agriculture (PA). In addition to widely used indices like NDVI
and EVT, various specialized VIs have been developed for specific
purposes and applications. For instance, the Green Normalized
Difference Vegetation Index (GNDVI) is effective in correcting
soil background influences and is frequently employed in
precision farming (Sishodia et al., 2020). Similarly, the Soil
Adjusted Vegetation Index (SAVI) is designed to reduce the
effects of soil brightness in areas with sparse vegetation, making
it particularly valuable for assessing vegetation in semi-arid
regions (Almalki et al., 2022). Additionally, wetland mapping and
hydrological studies employ the Normalized Difference Water
Index (NDWI) to detect the presence of water, utilizing the
differences in near-infrared (NIR) and shortwave infrared
reflectance of vegetation and water (Ma et al., 2019). These
indices are very important in extracting specific information
about vegetation properties from remote sensing data, enabling
a wide range of applications in environmental monitoring
(Arnold et al., 2013), agricultural crop monitoring, and yield
predictions (Na et al., 2016), land use planning, and agricultural
ecosystem management (Silva et al., 2020).

The role of multispectral imagery in remote sensing is
important, as the collected data across distinct spectral bands,
allows the calculation of precise VIs. MIS offers higher spectral
resolution compared to panchromatic images, which capture
only a single band wavelength. This enhanced spectral resolution
allows for more detailed observation of precise differences in how
objects reflect light, providing a clearer and more detailed
understanding of plant health. To maximize the benefits of VIs,
it is essential to integrate spectral band data from various sources,
including UAVs, terrestrial sensors, and satellite-based
multispectral imagery. While hyperspectral imagery provides
detailed spectral information on vegetation, multispectral images
are still significant for identifying key patterns and trends,
offering a comprehensive view of factors affecting the earth’s
vegetation (Assmann et al., 2018). Besides the agriculture sector,
multispectral imagery, through its ability to detect visible and
non-visible portions of the electromagnetic spectrum, is useful
in multiple applications, such as water quality assessment (Cillero
Castro et al,, 2020), ocean environment monitoring (Yuan et al.,
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2023) and mining applications (Pour et al., 2021). Furthermore,
studies have explored the fusion of spectral band data from
multispectral images with derived VIs for ground classification
(Zhang et al., 2021), highlighting the importance of combining
multispectral imagery and VIs in various remote sensing
applications.

However, multispectral images are simultaneously influenced
by various environmental factors, including atmospheric conditions
(Anakkald et al,, 2022), sunlight angle (Honkavaara et al., 2012),
and surface characteristics such as surface roughness. A study
found that with the increase in surface roughness, the resolution
of the human visual system (HVS)-based method decreases
significantly (Enhui et al., 2019). Although soil cosidered as
a disturbing factor in UAV imagery due to its influence, many
researchers now prefer using the Modified Soil Adjusted
Vegetation Index (MSAVTI) or SAVI along with the widely used
NDVTI or Normalized Differential Red-Edge Vegetation Index
(NDRE) for more accurate results (Zhen at al., 2021; Voitik et al.,
2023; Fabijanczyk and Zawadzki, 2022). Variations in natural
light (Knoop et al., 2020) and atmospheric conditions are also
alarming factors that can introduce inconsistencies and reduce
image clarity, while dust and pollutants can degrade image quality
by settling on optical surfaces (Fan et al., 2022). While each of
these factors can individually degrade multispectral data, their
combined impact can substantially affect the quality and
interpretation of the images, thereby influencing the accuracy of
the derived information. Consequently, it is imperative to
thoroughly understand and account for these environmental
parameters to ensure precise analysis and interpretation of
multispectral data in various applications, including remote
sensing and vegetation monitoring.

This review aims to provide a comprehensive exploration of
the major environmental factors influencing the accuracy of
multispectral imagery specifically tailored for VIs data calculation
in remote sensing applications. The influence of environmental
parameters on the accuracy of multispectral imagery and VIs
data calculation has been the subject of various studies. A study
on drought pattern estimation using multispectral imagery
highlighted the impact of environmental factors on the accuracy
of VIs. Atmospheric conditions and soil moisture were identified
as key influencers in VI assessment (Buma and Lee, 2019).
Multispectral images and VIs for precision farming applications
from UAV images and ground applications emphasize the
significance of environmental factors in remote sensing for
vegetation monitoring (Candiago et al., 2015). The influences of
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field conditions on raw data quality and VIs highlight the impact
of environmental parameters on multispectral images.

These studies emphasized the necessity of considering factors
like spatial resolution, field of view, usability, payload mass, and
cost when employing remote sensing technologies for vegetation
monitoring (Tmusi¢ et al.,, 2020). Additionally, weather and sun
angle are factors that influence aerial-captured multispectral
imagery quality (Assmann et al., 2018). Therefore, it is essential
to account for these environmental factors to ensure the accuracy
and reliability of multispectral imagery and VIs data in agricultural
applications. The objective of this review was to provide an
overview of the major environmental factors that influence
the accuracy of multispectral imagery when calculating VIs in
remote sensing applications for monitoring crops vegetation
health and related applications in agricultural domains.

2. Multispectral Reflectance
Measurement Technologies

Multispectral sensing is a fundamental technique in remote
sensing that requires significant data acquisition and processing
to accurately analyze and interpret various environmental and
surface characteristics. This method allows for a clearer and more
comprehensive understanding of the earth’s surface characteristics
than traditional panchromatic or monochromatic sensing. In
multispectral sensing, sensors are equipped with detectors or
filters designed to capture radiation within distinct spectral bands
(Akkoyun, 2022). These bands are strategically chosen to target
features of interest, such as vegetation health (Vlachopoulos et
al., 2021). The key advantage of multispectral sensing lies in its
ability to discriminate between different surface materials based
on their unique spectral signatures.

Multispectral sensing relies on the unique ways in which
different materials reflect or emit light across the spectrum. Each
material has a distinct spectral signature because of how it
interacts with light at various wavelengths (Berger et al., 2022).
Through the utilization of multispectral sensors, data can be
captured in multiple bands, facilitating the creation of spectral
profiles for different surface features (Lu et al., 2020). Subsequent
analysis of this data yields valuable insights into the composition,
health, and spatial distribution of observed targets (Yang et al.,
2020). The selection of spectral bands is of paramount importance
and is contingent upon the precise objectives of the remote
sensing application. For instance, in the realm of vegetation
monitoring, bands sensitive to chlorophyll absorption and near-
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infrared reflectance are frequently employed (Asadzadeh et al.,
2022). Multispectral sensing emerges as a potent and adaptable
tool in remote sensing, furnishing a rich repository of data for
diverse applications encompassing environmental monitoring,
agriculture, urban planning, disaster assessment, and so on.
The theoretical principles of multispectral sensing serve as
the foundation for extracting meaningful information from
the reflectance data.

2.1. Sensor

Technologies for remote sensing (RS) have transformed agricultural
research, becoming essential instruments for tracking the
dynamics of crop growth and precisely measuring vegetation
indicators (Martos et al., 2021). This cutting-edge field includes
three major areas (Table 1) such as (i) satellite platforms, which
offer global coverage and the ability to monitor over an extended
period (Belward and Skeien, 2015); (ii) UAV/airborne systems,
which provide unmatched flexibility and high-resolution imagery
(Han et al,, 2020); and (iii) ground-based platforms, which
provide highly accurate, localized data (Gao et al., 2019). Using
these platforms, several sensors have been used to obtain the
required information (Lan, 2009).

Multispectral sensors, such as those on the Landsat and SPOT
satellites, have been instrumental in providing mid-resolution
data for analyzing land use, vegetation health, and agricultural
trends (Toulios, 2015). The ability of these sensors to capture
data in multiple spectral bands allows for the calculation of
VIs like the NDVI, which is widely used to assess plant health
and monitor crop growth. Integration of KOreaMulti-Purpose

Satellite (KOMPSAT)-2 imagery and field measurements were
applied in a study to assess the relationship between VIs and crop
yield (Lee et al., 2011). The development of high-resolution
multispectral imagery from satellites like QuickBird, WorldView,
and IKONOS has further enhanced the ability to monitor crop
conditions and other vegetation-related metrics at finer spatial
resolutions (Khalig, 2020). A wide range of multispectral sensors,
including those on platforms such as Sentinel-2, MODIS, and
RapidEye, further support diverse agricultural applications and
improve data acquisition and processing techniques (Pejak et al,,
2022; Johnson, 2016; Dhau et al.,, 2019). These developments have
enabled more precise agricultural management practices and
environmental monitoring.

UAV-based multispectral sensors, such as the MicaSense
RedEdge (Di Gennaro et al., 2022), Parrot Sequoia (Deng et al.,
2018), and Sentera, have become increasingly popular for their
flexibility and high spatial resolution. These UAV-based systems
allow for frequent and precise data collection over specific areas,
making them invaluable for detailed crop monitoring, precision
agriculture, and environmental assessments. The integration of
UAV-based multispectral sensors with traditional satellite and
ground-based measurements provides a comprehensive approach
to vegetation monitoring and enhances the accuracy and utility
of remote sensing data. Additionally, UAV-based sensors like the
DJI P4 Multispectral and Headwall Nano-Hyperspec deliver high-
resolution, localized data for precise agricultural assessments
(Choosumrong et al., 2023; Lu et al., 2020).

Ground-based multispectral sensors, such as the Analytical
Spectral Devices (ASD) FieldSpec range, complement satellite

Table 1. Comparative analysis of remote sensing methods summarizing the advantages, disadvantages, and applications

Method Advantage Disadvantage Application
v Global coverage v Lower spatial resolution v Land use/cover mapping
v Long-term monitoring v Cloud cover interference v Crop yield prediction

Satellite v Consistent data acquisition v Fixed revisit time v Vegetation health monitoring
v Large area coverage v Atmospheric correction needed  Regional drought assessment.

(Belward and Skeien, 2015) (Bernstein et al., 2012)
v Very high spatial resolution v Limited coverage area v Precision agriculture
v Flexible timing and frequent revisits v Short flight times v Crop stress detection
UAV v Ability to fly under clouds v Weather dependency v Weed mapping

v Cost-effective for small areas v Regulatory restrictions v Irrigation management

Ground-based

(Han et al., 2020)

v Highest accuracy and detail
v Direct measurements possible
v No atmospheric corrections needed
v Ability to collect samples
(Gao et al., 2019)

v Very limited spatial coverage
v Time-consuming and labor-intensive
v Point measurements, not continuous

(Di Gennaro et al., 2022)

Crop health assessment

Soil moisture measurement
Chlorophyll content estimation
Calibration/validation of satellite
and UAV data

(Aasen et al., 2018)

AN NN
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data by providing detailed field measurements that can be used
to validate and enhance remote sensing analyses (Aasen et al.,
2018). These sensors are particularly useful for collecting ground
truth data, which is critical for the accurate interpretation of
satellite imagery (Bausch and Khosla, 2010). Ground-based
sensors, including the SPAD 502 Plus Chlorophyll Meter and
Trimble GreenSeeker, provide critical on-site measurements
that enhance the validation and calibration of remote sensing data
during crop growth monitoring (Dadhich et al., 2023; Tagarakis
etal., 2022).

The remote sensing media can be broadly categorized into
passive and active techniques, each offering unique advantages
for various applications (Fig. 1). Passive optical methods involve
the detection of naturally emitted or reflected light, while active
techniques rely on the transmission of light and subsequent
measurement of the reflected or backscattered signal (Khanal
et al,, 2017). The integration of both passive and active optical
methods has become increasingly prevalent, with the emergence
of hybrid multi-sensor systems that combine cameras and
laser scanners. This trend towards integration has significantly

Fig. 1. Active and passive optical sensing methods.

https://lwww.kjrs.org

enhanced the capabilities of optical remote sensing, enabling
more comprehensive and accurate data acquisition for a wide
range of environmental monitoring and mapping applications.
The use of passive optical methods, such as multispectral
and hyperspectral imaging has been instrumental in capturing
detailed information about land cover, vegetation health, and
other surface characteristics. These methods involve the detection
of sunlight reflected from the earth’s surface across different
spectral bands, allowing for the extraction of valuable information
related to VIs, soil composition, and other environmental
parameters (Pallazi et al., 2019). Active optical techniques, on the
other hand, have proven to be highly effective for mapping
topographic features, bathymetry, and subsurface structures
(Bebaeian et al., 2019). These methods typically involve the
transmission of laser or other light sources, with subsequent
measurement of the reflected or backscattered signal. The
integration of both passive and active optical methods has
significantly enhanced the capabilities of optical remote sensing,
enabling more comprehensive and accurate data acquisition for
a wide range of agricultural implementations (Sadeghi et al.,

Own light
source
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2017; Fang et al.,, 2018). Table 2 outlines the applications of these
sensors along with the data acquisition methods for agricultural
research.

2.2. Measurement and Data Processing

The accurate measurement and processing of multispectral data
are crucial for the effective monitoring of crop growth and
vegetation health. Various types of sensors, including satellite-
based, UAV-mounted, and ground-based sensors, are employed
to capture this data (Table 2). Satellite-based sensors such as
those on the Landsat series, Sentinel-2, MODIS, SPOT series,
RapidEye constellation, and Planet constellation provide a range

Table 2. Multispectral sensors, platforms, and applications

of resolutions and temporal frequencies, capturing multispectral
data that are processed using various image analysis techniques,
VIs, and machine learning methods (Chaves et al., 2020; Pejak
etal., 2022; Johnson, 2016; Navarro et al., 2016; Dhau et al., 2019;
Myers, 2021). These sensors enable large-scale monitoring and
detailed analysis of VIs, such as the NDVI, which are essential
for assessing plant health.

UAV-based sensors, including the MicaSense RedEdge series,
Tetracam ADC series, Sentera sensors, SlantRange series, DJI
P4 Multispectral, and Headwall Nano-Hyperspec, offer high-
resolution and localized data collection capabilities. These
sensors are mounted on UAVs and are particularly useful for

Multispectral sensor Application

Data acquisition and processing

Reference

Monitoring land use,
vegetation health, and
agricultural trends

Landsat series
(Landsat 8, 9)

Monitoring crop health, yield

Semie 2 prediction, and soil properties
Assessing large-scale
MODIS vegetation dynamics and crop
Satellite-based productivity
sensors ) -
SPOT series Monitoring crop growth and
(SPOT 5, 6) land cover classification
RapidEye l\/Iom_torlng agricultural
. practices and crop stress
constellation detect]
etection
Planet constellation High-frequency monitoring of
(PlanetScope, SkySat)  crop growth and health
MicaSense Monitoring crop health and
RedEdge series stress, generating VIs
Tetracam ADC Assessing crop health and
series vigor
Monitoring crop conditions
Sentera sensors .
and generating VIs
UAV-based
SRS SlantRange 3p Precision agriculture and crop
and 4p series monitoring
DJI P4 multispectral l\/lomtor_mg crop health and
generating VIs
Headwall nano- Detailed hyperspectral imaging
hyperspec for crop health monitoring
324

Spaceborne sensor capturing mid-resolution
multispectral data; processed using various
image analysis techniques

Spaceborne sensor capturing high-resolution
multispectral data; processed using various Vls
and machine learning techniques

Spaceborne sensor providing moderate-resolution
data; processed for NDVI and other Vis

Spaceborne sensor capturing high-resolution
multispectral images; processed for detailed
analysis of VIs

Spaceborne sensor capturing multispectral data
with high temporal frequency; processed for Vls
and crop condition assessment

Spaceborne sensor providing high-resolution,
high-frequency multispectral data; processed for
detailed crop analysis

Mounted on UAVs for high-resolution
multispectral data collection; processed for all Vis

UAV-mounted sensors capturing multispectral
data; processed for various VIs

UAV-mounted sensors capturing high-resolution
multispectral images; processed for detailed
crop analysis

UAV-mounted multispectral sensors capturing
high-resolution data; processed for NDVI, NDRE,
and other indices

UAV-mounted multispectral sensor capturing
high-resolution data; processed for NDVI, NDRE,
and other indices

UAV-mounted hyperspectral sensor capturing
continuous spectral data; processed for detailed
crop condition analysis

Chaves et al. (2020)

Pejak et al. (2022)

Johnson (2016)

Navarro et al. (2016)

Dhau et al. (2019)

Myers (2021)

Vidican et al. (2023);
Kurbanov and
Zakharova (2020)
Mazzetto et al. (2009)

Bhagat et al. (2019)

Pasichnyk et al. (2020)

Choosumrong et al.
(2023)

Lu et al. (2020)
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Table 2. Continued

Multispectral sensor Application Data acquisition and processing Reference
ASD FieldSpec series Fleld_ measurements for crop Handheld or tripod-mounted spectrometer; Sparks (2017)
monitoring captures spectral data for ground truth validation
Spectral Evolution Spectral measurements for crop  Handheld spectrometer capturing detailed spectral Hruska (2021)

PSR+ series health assessment

Crop Circle Phenom
series (Active crop
canopy sensor)

Measuring crop canopy
reflectance and health

Ground-based
sensors

SPAD 502 Plus
Chlorophyll Meter

Measuring leaf chlorophyll
content

FieldScout CM 1000
NDVI Meter

Measuring NDVI and crop
health

Trimble GreenSeeker
handheld crop sensor

Measuring NDVI and crop
health

LI-COR LI-1800 Ground-based spectral
Portable measurements for crop health
Spectroradiometer assessment

data; processed for VIs and crop condition analysis

Ground-based active sensor capturing spectral
data; processed for VIs and crop condition analysis

Handheld meter capturing chlorophyll data;
processed for crop health assessment

Handheld meter capturing NDVI data; processed
for crop health assessment

Handheld sensor capturing NDVI data; processed
for crop health assessment

Handheld spectroradiometer capturing detailed
spectral data; processed for VIs and crop condition
analysis

Cummings et al. (2021)

Dadhich et al. (2023)

Sriram et al. (2022)

Tagarakis et al. (2022)

Vidican et al. (2023)

ADC: analog-to-digital converter, ASD: analytical spectral devices, PSR: polarimetric scanning radiometer, CM: chlorophyll meter.

precision agriculture and detailed crop monitoring, providing
data processed for various VIs, such as NDVI and NDRE, to
assess crop health and stress (Vidican et al., 2023; Kurbanov
and Zakharova, 2020; Mazzetto et al., 2009; Bhagat et al., 2019;
Pasichnyk et al., 2020; Choosumrong et al., 2023; Lu et al., 2020).

Ground-based sensors like the ASD FieldSpec series, Spectral
Evolution PSR+ series, Crop Circle Phenom series, SPAD 502 Plus
Chlorophyll Meter, FieldScout CM 1000 NDVI Meter, Trimble
GreenSeeker, and LI-COR LI-1800 Portable Spectroradiometer
provide critical on-site measurements that are vital for validating
and calibrating remote sensing data. These handheld or tripod-
mounted devices capture detailed spectral data, which are
processed to generate VIs and assess crop conditions accurately
(Sparks, 2017; Hruska, 2021; Cummings et al., 2021; Dadhich et
al., 2023; Sriram et al., 2022; Tagarakis et al., 2022; Vidican et al,,
2023). These integrated approaches of using satellite, UAV, and
ground-based sensors enhance the precision and reliability of

agricultural monitoring and management practices.

3. Crop Growth Status Monitoring Using
Multispectral Imagery

In recent years, multispectral is likely to create possibilities in the
field of remote sensing, offering valuable insights into agricultural
prospects. Multispectral imaging involves capturing image data

https://www.kjrs.org

within specific wavelength ranges across the electromagnetic
spectrum, typically using sensors that measure reflected energy
in specific portions of the spectrum. These technologies have
found extensive use in environmental monitoring, precision
agriculture, mineral exploration, and ocean environment assessment.
The distinct advantages of multispectral imaging have led to its
widespread adoption in diverse fields. Multispectral imaging,
with its ability to detect visible and non-visible portions of the
electromagnetic spectrum, has proven instrumental in various
remote sensing applications.

However, multispectral imaging has become more enticing for
the calculation of VIs for crop growth (Lee et al., 2019), offering
valuable insights into various environmental and agricultural
applications. This technique involves capturing image data within
specific wavelength ranges across the electromagnetic spectrum,
typically using sensors that measure reflected energy in specific
portions of the spectrum. The reflectance data obtained from
multispectral imaging is crucial for the calculation of various
VIs, such as the NDVI, SAVI, and GNDVI (Pereira et al., 2017).
These indices are derived from the reflectance of different light
wavelengths and are designed to capture specific characteristics
of vegetation. For example, NDVI, one of the most widely used
VIs, is calculated from the red and NIR bands of multispectral
imagery. It provides a normalized measure of the “greenness”
of vegetation and is a key tool in applications ranging from
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Table 3. Common Vls using remotely sensed reflectance data

Vegetation indices Formula Reference
Normalized differential vegetation index (NDVI) NDVI = NIR = RED Rouse et al. (1974)
NIR + RED '
. . . L _ NIR-RE .
Normalized differential red-edge vegetation index (NDRE) NDRE = NR < RE Gitelson et al. (1974)
Green-red vegetation index (GRVI) GRVI = G’?‘gsn Tucker et al. (1979)

Green normalized differential vegetation index (GNDVI)

Enhanced vegetation index (EVI)

Soil-adjusted vegetation index (SAVI)

GNDVI = NIR — GREEN
NIR + GREEN

EVI=

2.5(NIR — RED)

(NIR =6 x RED — 7.5 x BLUE) + 1

SAV| = (NIR=RED) (1 + L)
NIR + RED + L

0SAVI = 1.6 [ IR —RED

Optimized soil adjusted vegetation index (OSAVI)

Modified soil adjusted vegetation index (MSAVI)

" "NIR+RED +0.16

]

MsAV| = 2 X NIR + 1= /(2 x NIRY — 8(NIR — RED)

2
NIR — RED

Renormalized differential vegetation index (RDVI RDVI = —
g ( ) / NIR + RED

Gitelson et al. (1996)

Huete et al. (1997)

Huete (1988)

Rondeaux et al. (1996)

Qi etal. (1994)

Roujean et al. (1995)

(NDRE — NDREgin)

Canopy chlorophyll content index (CCCI) CCl = NDREv — NDREn) Barnes et al. (2000)
Simple ratio (SR) SR= FTTIFI; Jordan (1969)
o . (NIR/RED) -1
MSR = ————
Modified simple ratio (MSR) (NIR/RED) = 1 Chen (1996)

RE: red-edge, L: soil adjustment factor.

ecological research to precision agriculture. However, a
significant limitation of NDVT is its tendency to saturate under
conditions of high biomass or dense vegetation. (Huete et al.,
2002). This phenomenon occurs when further increases in
vegetation density or chlorophyll content no longer result in a
proportional increase in NDVI values (Gitelson, 2004).
Consequently, NDVI becomes less responsive to variations in
vegetation beyond a certain threshold of greenness or canopy
density, thereby reducing its effectiveness in capturing subtle
differences in highly vegetated areas (Mutanga and Skidmore,
2004; Gu et al,, 2013). The precision of vegetation calculations is
directly influenced by the accuracy of reflectance data obtained
from sensors (Matternicht et al., 2018). This accuracy is crucial
for various agricultural operations, as it enables precise assessments
of crop and plant nutrient status, facilitating targeted fertilizer
applications. Additionally, accurate reflectance measurements
allow for thorough checks on growth status, ensuring timely
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interventions when necessary. Ultimately, reliable reflectance data
serves as a cornerstone for optimizing agricultural practices,
enhancing productivity, and promoting sustainability in the food
production system. Based on the basic characteristics of the
sensors, a number of environmental parameters affect the
accuracy of the reflectance data.

However, the reflectance from different parts of a plant
varies due to variations in their anatomical and biochemical
characteristics (Ge et al., 2011). Plant tissues have unique spectral
signatures influenced by factors such as chlorophyll content,
water content, and structural properties (Courault et al., 2005).
In remote sensing applications, understanding the reflectance
from different plant components is crucial for extracting meaningful
information related to plant health and physiological conditions.
Leaves, as fundamental components of plant anatomy, exhibit
distinctive reflectance patterns influenced by the presence of
chlorophyll (Maes et al., 2012). Chlorophyll, a vital pigment in
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photosynthesis, absorbs light in specific spectral regions, creating
discernible reflectance features. In the NIR region, healthy leaves
display elevated reflectance due to minimal chlorophyll
absorption (Zhang et al., 2019). This heightened NIR reflectance,
coupled with lower reflectance in the visible spectrum, especially
in the red region, forms a characteristic spectral response. The
contrasting reflectance between these spectral regions serves as
a key indicator of leaf health and photosynthetic activity. In
remote sensing, this spectral behavior is effectively leveraged
in indices such as the NDVI (Zhang et al., 2019), and many
more VIs (Table 3), where higher NDVI values signify healthier
vegetation, and other VIs carry variable insights for individual
crops. Other VIs are visualised differently for each crop.

On the other hand, non-vegetated surfaces, such as bare soil,
manifest different reflectance characteristics distinct from those
of vegetation. Bare soil typically exhibits higher reflectance in the
visible spectrum, primarily influenced by soil composition and
moisture content (Mohammed et al., 2019). In the NIR region,
however, soil reflectance tends to be lower. This stark contrast
in reflectance between the visible and NIR regions becomes
instrumental in discriminating between vegetated and non-
vegetated areas in remote sensing applications. Remote sensors,
capturing these reflectance differences, enable the development
of classification algorithms that effectively distinguish between
land cover types. Understanding the reflectance from variable
portions of a plant, such as leaves, stems, and flowers allows
for more detailed insights into plant conditions (Fernandez et
al., 2018). Researchers often use hyperspectral sensors, which
capture a large number of narrow spectral bands, to analyse
detailed reflectance patterns from different plant components
(Castaldi et al., 2017). This detailed spectral information aids in
the development of more sophisticated models and indices for
precise vegetation analysis.

4. Factors Affecting Multispectral
Reflectance Data

The fundamental characteristics of multispectral sensors, as discussed
above, are subject to the influence of various environmental
parameters. The accuracy and applicability of multispectral
imagery in agricultural contexts are profoundly influenced by
several environmental parameters, whose intricate interplay
can significantly shape the reliability and effectiveness of data
interpretation and subsequent decision-making processes.
Atmospheric corrections represent one of the most prominent
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factors impacting multispectral data quality (Pan et al., 2022).
Aerosols, water vapor, and various gases present in the atmosphere
can exert considerable influence by altering the path of incoming
radiation and causing distortions in observed reflectance (Sabater
et al,, 2020). These disturbances, which manifest as scattering
or absorption of light, introduce complexities in accurately
quantifying surface properties and vegetation characteristics
(Qamar et al,, 2023). Consequently, the precision of vegetation
calculations, such as indices for crop health or nutrient status,
may be compromised, leading to less reliable outcomes in
multispectral remote sensing applications.

The dynamic nature of sunlight angle throughout the day
poses another layer of complexity. Variations in solar geometry
influence the illumination conditions across agricultural landscapes,
resulting in temporal fluctuations in spectral signatures (Willockx
et al,, 2022). This phenomenon underscores the importance of
considering diurnal changes in lighting when acquiring and
analyzing multispectral data to mitigate potential inaccuracies
arising from differing illumination angles. Furthermore, surface
properties, including vegetation density, canopy structure, and
soil moisture content, contribute additional layers of complexity
to multispectral data interpretation. Heterogeneities in these
surface characteristics can lead to spatial variations in reflectance
patterns, further complicating the extraction of meaningful
information from multispectral imagery. In practical agricultural
applications, the impact of environmental parameters on multispectral
imagery extends to various critical tasks, including early detection
of plant health issues, disease identification, and precise water
management. Inaccuracies stemming from atmospheric distortions,
varying sunlight angles, and surface property heterogeneity
can impede the ability to detect subtle changes in vegetation
conditions or accurately assess crop stress levels. Consequently,
the reliability of multispectral data in informing agronomic
decisions, such as targeted interventions for pest management or
irrigation optimization, may be compromised.

To address these challenges and enhance the utility of
multispectral remote sensing in agriculture, it is imperative to
develop robust strategies for environmental parameter correction
and data normalization. Advanced atmospheric correction
algorithms can mitigate the effects of atmospheric interference,
enabling more accurate estimation of surface reflectance. Additionally,
techniques for geometric and radiometric calibration can help
standardize multispectral data across different illumination
conditions and surface types. Moreover, integrating additional
information, such as meteorological data and ground-based
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measurements, can further refine multispectral analyses and
improve the accuracy of derived agronomic insights (Jang et al,,
2024). This review provides a detailed examination of these major
environmental factors, delving into their intricate interactions
and discussing their implications for accurate reflectance data
interpretation in remote sensing applications. Understanding and
mitigating the effects of these factors are essential for enhancing
the reliability and precision of remote sensing analyses across
diverse landscapes and applications.

4.1. Solar Zenith Angle

SZA in multispectral imaging systems is one of the major factors
to keep in observation as it affects the reflectance data. This angle
significantly influences the amount of sunlight reaching the
sensor, impacting the quality and accuracy of the captured data.
Proper consideration of the SZA is crucial for optimizing the
performance and reliability of multispectral imagery. During the
data collection from any remote sensing platform, SZA has
always had a significant impact in diverse sectors. Some novel
observational approaches were employed to examine MODIS
satellite retrieval biases in cloud optical thickness (1) and effective
radius (re) at high SZA (8), using three different MODIS bands
(1.6, 2.1, and 3.7 pum). Significant variations were observed,
with results indicating a rapid increase in T and a decrease in
rez; and res7 at high 6o (Grosvenor and Wood, 2014). These
changes collectively contributed to an overall increase in cloud
droplet number concentration (Nd) of 40-70%. MODIS swath
data was potentially implicated at high 6, underscoring the
importance of considering SZA effects in the interpretation of
cloud properties from satellite observations (Gao et al., 2014).
Additionally, some other findings notified that a major Bidirectional
Reflectance Distribution Function (BRDF) effect arises from the
day-of-year effect and can cause variations of 0.04-0.06 reflectance
compared to mid-summer observations. However, when less
variability in SZA was found, the view angle effect became a
major effect for agricultural applications and can cause variations
of about (-0.01, 0.02) for a red band and about (-0.03, 0.06) for
an NIR band (Gao et al., 2014).

In terms of UAV observation, the impact of SZA was found
on UAV-based multispectral images in diverse crop breeding
trials at different latitudes. Several VIs were influenced by SZA,
while the simple ratio (SR) index exhibited less variability across
SZA in both high and low-latitude zones, suggesting its suitability
for reliable field-based phenotyping applications (Valencia-Ortiz
etal, 2021).

328

Solar positioning«———

;. \

Sensorplatform 1—? ; ’.,?,./;f
! ’ 3
]

Fig. 2. Variations of SZAs in remote sensing; 01 with the high SZA
where after a while SZA reduces to 0o.

Variations in SZA (Fig. 2) wield a notable influence on the
extraction of vegetation phenology from multispectral satellite
imagery, with discernible impacts on the sensitivity of key indices
such as NDVIand EVI. Notably, NDVI demonstrated heightened
sensitivity compared to EVI, as elucidated in prior studies (Ma
et al., 2020). Among some environmental factors examined, it
was found that SZA had a more pronounced effect on UAV-
derived NDVT values than factors such as flight altitude (FA) and
growth stages (Jiang et al., 2020). Due to less sun angle (near to
nadir, 6o) isotropic scattering occurs in the atmosphere, reducing
the amount of shadows during that period that enhanced the
consistency of multispectral data. (Camacho-de Coca et al.,
2001).

Similarly, from a ground-based perspective, investigations
revealed that smaller SZAs like 0; shown in Fig. 2 exhibited
diminished effects on VI calculations as well as displayed less
greenness variability (Pinter et al., 1987). The impact of SZA on
multispectral reflectance data and VI calculation is a critical
consideration in remote sensing. Another research demonstrated
the sensitivity of VIs to solar geometry, with the continuous
change in narrow red and near-infrared bands and their VIsasa
function of SZA being examined throughout the growing season.
The study found 45° as a recommended SZA for data collection
over the traditional “high sun” practice (Middleton et al., 1991).
Further investigation was carried out to examine the impact of
sunlight conditions on the consistency of VIs in croplands,
emphasizing the significant influence of solar geometry on VI
values. The study found that in general, the VIs decreased with
decreasing SZA in a clear sky condition, with this response being
significantly affected by the growth stage and diffuse radiation
conditions (Salem et al., 2023). Similarly, a ground-based approach
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was carried out to investigate the effect of SZAs on the consistency
of VIs (NDVI and GRVI) derived from spectral measurements.
The study found that NDVI (0.4-0.8) and GRVI (< 0) decrease
with solar zenith angle, especially under clear skies during the
middle growth stage, emphasizing the need to account for these
factors in accurate vegetation monitoring (Ishihara et al., 2015).

These findings collectively underscore the substantial influence
of SZA on multispectral reflectance data and VIs, emphasizing
the need to account for solar geometry variations to ensure the
accuracy and reliability of VIs across diverse landscapes and
growth stages. Significant studies were carried out regarding the
viewing geometry. The influence of angular view, SZA, and
viewing geometry on VIs obtained from multispectral imagery
is profound and multifaceted. These factors critically affect how
light interacts with vegetation and is captured by the sensor,
thereby influencing the accuracy and sensitivity of the derived
VIs. Variations in viewing angles, such as oblique views at —-40°
and -60° VZA, can substantially improve the capture of canopy
structure and reduce the impact of shadows, leading to more
accurate estimations of vegetation parameters like nitrogen
concentration. Specifically, oblique angles often enhance the
precision of measurements by mitigating shadow effects and
improving the uniformity of light capture across the canopy (Lu
etal.,2019).

Moreover, the anisotropic behavior of VIs, where the indices’
responses vary with different view angles, underscores the
significant role of viewing geometry. This variability is particularly
evident in indices related to light use efficiency and leaf pigments,
which demonstrate pronounced angular responses influenced by
the proportion of non-photosynthetic material and the type of
vegetation. The reflectance anisotropy of the Hemispherical
Directional Reflectance Factor (HDRF) further modulates these
angular responses, highlighting the need for careful consideration
of viewing geometry in remote sensing applications. Overall,
these findings emphasize that the choice of viewing geometry is
crucial for accurate vegetation assessment and underscores the
importance of accounting for these effects in the interpretation
and application of multispectral imagery (Verrelst et al., 2008).
Proper consideration and mitigation of the effects of SZA are
essential for optimizing the performance and reliability of
multispectral imagery for various environmental monitoring and
agricultural applications.

4.2. Atmospheric Conditions

The influence of atmospheric conditions on reflectance data in
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remote sensing is a critical consideration, as it can significantly
impact the accuracy and reliability of multispectral imagery.
Atmospheric effects, such as the scattering and absorption of
sunlight by atmospheric molecules and aerosols, can lead to
variations in reflectance data, affecting the quality of satellite
images (McNaim et al., 2002; Enclona et al., 2004). “Reduction
of Atmospheric Effects in Satellite Images during the COVID-19
Induced Lockdown™ by the Journal of the Indian Society of
Remote Sensing discusses the impact of atmospheric effects, such
as the scattering and absorption of sunlight by atmospheric
molecules and aerosols, on satellite images (Joshi et al., 2020).

It provides insights into the reduction of atmospheric effects
in satellite images during the COVID-19-induced lockdown,
highlighting the significance of atmospheric conditions on
reflectance data. Many researchers emphasized the significant
influence of atmospheric conditions such as atmospheric haze
(Nguyen et al., 2015; He et al., 2023), scattering (Mazur et al.,
2018), water vapour absorption (Li et al., 2023) and aerosol
content (Somvanshi et al., 2020) on multispectral sensor data.
The impact of atmospheric light scattering on pixel intensities
varies significantly across different altitudes and wavelengths.
Notably, higher altitudes tend to show both positive and negative
changes in pixel intensity (Fig. 3), with shorter wavelengths (460
nm) generally experiencing more substantial negative effects,
while longer wavelengths (850 nm) display both large decreases
and some increases at specific altitudes (Mazur et al., 2018).

Atmospheric Resistant Vegetation Index (ARVI) provides
enhanced vegetation information, particularly useful for quantifying
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Fig. 3. The impact of atmospheric scattering on pixel intensity (%).
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seasonal variations in vegetation, especially in regions with high
atmospheric particulate pollution (Somvanshi et al., 2020). A
researcher identified atmospheric conditions as major contributors
to errors in spectral reflectance and fractional cover estimates
derived from multispectral imagery. These factors significantly
influenced the accuracy of the top-of-atmosphere (TOA) radiance
simulations, which in turn affected the estimation of ground
components such as green vegetation (GV), nonphotosynthetic
vegetation (NPV), and soil. The findings emphasize the critical
role of atmospheric variables in remote sensing analyses,
highlighting the need for careful consideration of atmospheric
conditions when interpreting multispectral data to minimize
errors in fractional cover estimates (Okin et al., 2015). Atmospheric
conditions, particularly seasonal weather variations, significantly
affect the radiometric quality of UAV imagery, impacting its
interpretative potential. A methodology was developed that
considered the characteristics of weather conditions to objectively
assess image quality under different meteorological conditions,
enhancing the accuracy of vegetation indices and remote sensing
analyses (Kedzierski et al., 2019).

Some atmospheric factors such as variations in ice crystal
habits and aerosol properties create uncertainties and are identified
as the primary source of errors, leading to effective radius
retrieval biases of several micrometers and optical thickness
uncertainties ranging from 1 to 2.5. Instrument noise and
calibration uncertainties further contribute to the overall error
but to a lesser extent compared to atmospheric variability (Zinner
et al,, 2016). Another investigation of the effect of atmospheric
conditions on remote sensing of vegetation parameters found a
notable correlation between atmospheric aerosol content, SZA,
observer position, and observation direction with the slope and
intercept of the ratio-leaf water content relationship. This research
highlights the significance of accounting for atmospheric conditions
in remote sensing analyses to improve the accuracy of vegetation
parameter assessments (Omran, 2018). Not only highlighting
the significant impact of atmospheric conditions on reflectance
data, but this study also underscores the necessity for precise
atmospheric correction methods to ensure the quality and consistency
of reflectance data for environmental monitoring and agricultural
applications. A QUick Atmosphere Correction (QUAC) model
was introduced to reduce the atmospheric effects on LANDSAT-
8 imagery (Bernstein et al., 2012). Recently many researchers
have focused on an algorithm for additional correction of Level
2 remote sensing reflectance data, emphasizing the importance
of refining correction methods to enhance accuracy in reflectance
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data analysis. (Korchemkina et al., 2022). Future research should
prioritize the development and validation of more sophisticated
atmospheric correction algorithms. These improvements will be
crucial in enhancing the reliability of remote sensing data for
precise environmental monitoring and agricultural management.

4.3. Illumination Conditions and Light Intensity
During Data Acquisition Period

The accuracy of multispectral data can be affected by various
parameters when images are taken at different times of the day.
These parameters include illumination conditions, solar irradiance
conditions, and the reflectance of the objects being imaged
(Wang et al,, 2019). Additionally, the use of multi-date imagery
and spectral indices has been found to improve classification
accuracy, highlighting the potential of using multispectral data
for various applications, such as vegetation mapping and land
cover classification (Shamaoma et al., 2023). In terms of predicting
the daily variations in rice canopy photosynthesis, a leaf layer
light response curve (LRC) model combined with UAV-based
multispectral data was employed. The study demonstrates that
light intensity, as measured by PAR, plays a crucial role in
accurately estimating photosynthetic parameters and their
relationship with multispectral vegetation indices, thereby
affecting the overall quality and reliability of the multispectral
imagery used for monitoring crop growth (Zhang et al., 2020).
Another study evaluated the impact of variable illumination on
VIs and the estimation of chlorophyll content using UAV imagery
captured under different lighting conditions, including sunny,
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Fig. 4. The standard deviation of all the Vs for soybeans under three
different illumination conditions.
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overcast, and partially cloudy days (Fig. 4) (Wang et al., 2023).
Additionally, the impact of time of day and sky conditions on
various VIs calculated from active and passive sensors and UAV
images in a wheat crop with different nitrogen treatments were
evaluated. Significant differences were observed in most VIs
between different time measurements, regardless of the sensor
and day of measurement. The NIR/Red edge ratio, water index,
and Red-Edge Inflection Point (REIP) index were identified as
the most stable indices over measurement times, indicating that
passive and active sensors can be used to measure on-farm at any
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Fig. 5. Ideal data acquisition timing for active and passive sensors.

Table 4. Environmental factors affecting the multispectral sensors

time of day from 9:00 to 16:00 (Fig. 5) by selecting optimized
indices (de Souza et al., 2021).

The widely employed VIs, namely the NDVI and the EVI,
exhibited notable sensitivity to variations in illumination conditions
(IC). Specifically, a more pronounced correlation was observed
between EVI and IC compared to NDVI and IC. Leveraging the
capabilities of Google Earth Engine and Landsat data, the study
conducted an extensive assessment of the temporal dynamics of
IC and VIs in a mountainous tropical forest spanning from 1984
t0 2017. The findings underscored the significance of accounting
for IC when interpreting VIs over prolonged periods, especially in
regions characterized by irregular topography, thereby augmenting
the precision of VI monitoring (Martin-Ortega et al., 2020).
Another spectral sensor GreenSeeker included the validation
of sensor responses under various environmental conditions,
such as canopy coverage, standoff distance, and tilting angle.
The research identified a valid range of conditions for accurate
measurements and observed that the NDVI response was
influenced by factors such as solar radiation, SZAs, temperature,
and relative humidity. Additionally, the study highlighted the
impact of surface wetness on the NDVI response, emphasizing
the need to consider and compensate for these variables when
using active spectral sensors for vegetation monitoring (Kim et
al., 2012). Overall, the ideal conditions for capturing multispectral
data are a clear sunny day (Fig. 4) or an overcast day with uniform
cloud coverage. Adverse lighting conditions can impact the
accuracy and consistency of data collection, making it important
to consider the time of day and sky conditions when acquiring
multispectral images. An increasing number of researchers have
dedicated their efforts to exploring the impact of environmental

Environmental factors Key findings Sensor type Reference

Atmospheric conditions Visibility and SZA made contributions to spectral and fractional l\/Iu|t|_spectra| Okin and Gu (2015)
COVer errors. satellite camera

S7A NDVI values increased with an increase in SZA, exposed soil, and Airborne hyperspectral Welch et al. (1973)

Time of data acquisition
and light intensity

Soil moisture content

Vegetation density

vegetative surface components under soil background influence.

The measured value was difficult to fully express the group
characteristics of the object for the passive sensors.

Spectral bands near 1,400 nm and 1,900 nm are typically avoided
due to strong interference by atmospheric moisture.

An overall accuracy (OA) of 75% was obtained for the dense
(tree cover area) vegetation, while cropland and grassland areas
had 59.4% and 65% OA respectively.

mapper (HyMap)
Multispectral sensors

Multispectral visible and
NIR sensors

Multifrequency SAR and
multispectral sensor

Kirchhof et al. (1980)

Blair and Baumgardner
(1977)

Bauer et al. (1979)

SAR: synthetic aperture radar.
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factors on multispectral sensors, building upon existing findings
in this rapidly evolving field (Table 4).

4.4, Other Environmental Factors

In multispectral remote sensing, the calculation of VIs is influenced
by a range of environmental factors beyond the commonly
recognized parameters such as SZA, radiometric calibration,
atmospheric conditions, illumination conditions, and light intensity.
A literature study introduced the factors as follows:

- Cloud cover plays a crucial role in determining the quality
of multispectral imagery and, consequently, impacts the
accuracy of VIs (Ajayi and Ojima, 2022).

- Rainfall events caused fluctuations in soil and vegetation
water content, leading to variability in the reflectance values
recorded by sensors (Bhaga et al., 2020).

- Humidity levels significantly affect atmospheric scattering
and absorption, which can distort the spectral signatures
captured by sensors (Zieger et al., 2010).

- Temperature fluctuations played an important role in influencing
plant physiological processes (Ahmed et al., 2011; Charrier
etal., 2015; Yang et al., 2023).

- Spatial and temporal variations due to topographical features,
land cover changes, and seasonal dynamics add to the complex
interplay of factors influencing multispectral imagery for VIs
calculation (Huang et al., 2023).

- Altitude direction, time and cloud generated 8% to 11%
variations in multispectral reflectance while the VI variability
was 1% to 5% (Ahn et al., 2020).

- Bad weather conditions and night period can cause less
accuracy in multispectral data. A study found that in these
conditions Radar Vegetation Index (RVI) is considered an
alternative to the VIs derived from multispectral imagery
(Kim et al., 2014).

By combining insights from various studies, this overview
emphasizes the necessity of comprehensively understanding these
environmental factors to improve the reliability and accuracy of
VIs derived from multispectral remote sensing data.

5. Discussion and Future Directions

This review highlights the intricate relationship between environmental
variables and the accuracy of multispectral reflectance data used
in VIs for remote sensing applications. Our analysis reveals that
atmospheric conditions, solar geometry, radiometric calibration,
illumination conditions, and environmental parameters significantly
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influence the quality and reliability of multispectral reflectance
data, with direct implications for agricultural operations and
ecosystem monitoring. High SZA have been shown to increase
cloud optical thickness by 40-70% and alter cloud droplet
characteristics, leading to substantial reflectance fluctuations in
the red (-0.01 to 0.02) and NIR (-0.03 to 0.06) bands. These
fluctuations critically impact VI accuracy, suggesting that optimal
data collection should occur at an SZA of 45° to minimize these
effects. Variations in atmospheric aerosols and water vapor
content can lead to surface reflectance fluctuations of up to
10-20% and 15-30%, respectively. The observed improvement
in satellite image accuracy during the COVID-19 lockdown,
due to reduced atmospheric effects, underscores the importance
of robust atmospheric correction techniques. Seasonal changes
in temperature and humidity can alter reflectance values by up
to 15%, while high wind speeds (15-20 m/s) can reduce NIR
reflectance by up to 25% due to leaf orientation changes. These
findings emphasize the need for continuous monitoring and
adjustment of VI calculations to account for temporal environmental
variations.

Moving forward, future research directions should focus on
the development of advanced correction algorithms and calibration
techniques to mitigate the effects of these environmental variables
and enhance the precision of VIs derived from multispectral
imagery.

- Effective data filtering requires the establishment of novel
calibration techniques for multispectral sensors (Mamaghani
and Salvaggio, 2019; Minatik et al., 2019; Jain and Pandey,
2021; Simoneau and Aubé, 2023; Shin et al., 2023). Traditional
methods frequently fall short when addressing the unique
problems presented by different datasets, but the precision
and reliability of data interpretation can be improved by
using novel calibration methods.

— Future research should prioritize the development and
validation of correction algorithms that can account for the
dynamic effects of SZA, aerosol optical thickness, water
vapor, and other atmospheric factors on reflectance data.

- The integration of meteorological data with multispectral
imaging, coupled with machine learning models for complex
data analysis, offers promising avenues for enhancing VI
calculations and overall data reliability.

- Continued exploration of novel sensor technologies and
data fusion techniques is essential for expanding the
capabilities of multispectral remote sensing, particularly for
environmental monitoring and agricultural applications.
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- Interdisciplinary collaborations among researchers, practitioners,
and policymakers are crucial for leveraging multispectral
imagery in informed decision-making and sustainable
resource management, especially in the context of global
environmental changes.

By pursuing these future directions, the field of remote sensing

can be advanced and contribute to more effective strategies
for monitoring and managing earth ecosystems and natural

resources.

6. Conclusions

In conclusion, this review highlights the substantial influence
of environmental variables on multispectral sensors and VI
calculations in remote sensing applications. The overview reveals
that atmospheric conditions, solar geometry, radiometric
calibration, and illumination conditions play crucial roles
in shaping the quality and reliability of the data collected from
multiple multispectral sensors. Cloud cover, rainfall events,
humidity levels, temperature fluctuations, and spatial-temporal
variations in topography and land cover further contribute to the
complexity of VI calculation. Addressing these environmental
factors through advanced correction algorithms, calibration
techniques, and integration of ancillary data is imperative to
ensure the accuracy and consistency of VIs derived from
multispectral sensor data. By developing a deeper understanding
of these environmental influences, researchers and practitioners
can optimize the utility of multispectral imagery in various fields.
This includes environmental monitoring, agriculture, land use
planning, and ecosystem management. Such optimization fosters
informed decision-making and supports sustainable resource
management practices. Moving forward, continued research and
innovation in correction methods and calibration techniques will
further enhance the reliability and applicability of multispectral
remote sensing, facilitating advancements in environmental

science and resource management on a global scale.
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