• Title/Summary/Keyword: Image denoising

Search Result 217, Processing Time 0.025 seconds

Performance change of defect classification model of rotating machinery according to noise addition and denoising process (노이즈 추가와 디노이징 처리에 따른 회전 기계설비의 결함 분류 모델 성능 변화)

  • Se-Hoon Lee;Sung-Soo Kim;Bi-gun Cho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.1-2
    • /
    • 2023
  • 본 연구는 환경 요인이 통제되어 있는 실험실 데이터에 산업 현장에서 발생하는 유사 잡음을 노이즈로 추가하였을 때, SNR비에 따른 노이즈별 STFT Log Spectrogram, Mel-Spectrogram, CWT Spectrogram 총 3가지의 이미지를 생성하고, 각 이미지를 입력으로 한 CNN 결함 분류 모델의 성능 결과를 확인하였다. 원본 데이터의 영향력이 큰 0db 이상의 SNR비로 합성할 경우 원본 데이터와 분류 결과상 큰 차이가 존재하지 않았으며, 노이즈 데이터의 영향이 큰 0db 이하의 SNR비로 합성할 경우, -20db의 STFT 이미지 기준 약 26%의 성능 저하가 발생하였다. 또한, Wiener Filtering을 통한 디노이징 처리 이후, 노이즈를 효과적으로 제거하여 분류 성능의 결과가 높아지는 점을 확인하였다.

  • PDF

A Mixed Nonlinear Filter for Image Restoration under AWGN and Impulse Noise Environment

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.591-596
    • /
    • 2011
  • Image denoising is a key issue in all image processing researches. Generally, the quality of an image could be corrupted by a lot of noise due to the undesired conditions of image acquisition phase or during the transmission. Many approaches to image restoration are aimed at removing either Gaussian or impulse noise. Nevertheless, it is possible to find them operating on the same image, which is called mixed noise and it produces a hard damage. In this paper, we proposed noise type classification method and a mixed nonlinear filter for mixed noise suppression. The proposed filtering scheme applies a modified adaptive switching median filter to impulse noise suppression and an efficient nonlinear filer was carried out to remove Gaussian noise. The simulation results based on Matlab show that the proposed method can remove mixed Gaussian and impulse noise efficiently and it can preserve the integrity of edge and keep the detailed information.

Spatially Adaptive High-Resolution Denoising Based on Nonstationary Correlation Assumption (비정적 상관관계를 고려한 공간적응적 잡음제거 알고리즘)

  • 김창원;박성철;강문기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1711-1714
    • /
    • 2003
  • The noise in an image degrades image quality and deteriorates coding efficiency of compression. Recently, various edge-preserving noise filtering methods based on the nonstationary image model have been proposed to overcome this problem. In most conventional nonstationary image models, however, pixels are assumed to be uncorrelated to each other In order not to increase the computational burden too much. As a result, some detailed information is lost in the filtered results. In this paper, we propose a computationally feasible adaptive noise smoothing algorithm which considers the nonstationary correlation characteristics of images. We assume that an image has a nonstationary mean and can be segmented into subimages which have individually different stationary correlations. Taking advantage of the special structure of the covariance matrix that results from the proposed image model, we derive a computationally efficient FFT-based adaptive linear minimum mean square error filter. The justification for the proposed image model is presented and the effectiveness of the proposed algorithm is demonstrated experimentally.

  • PDF

Edge Preserving Smoothing in Infrared Image using Relativity of Guided Filter

  • Kim, Il-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.27-33
    • /
    • 2018
  • In this paper, we propose an efficient edge preserving smoothing filter for Infrared image that can reduce noise while preserving edge information. Infrared images suffer from low signal-to-noise ratio, low edge detail information and low contrast. So, detail enhancement and noise reduction play crucial roles in infrared image processing. We first apply a guided image filter as a local analysis. After the filtering process, we optimization globally using relativity of guided image filter. Our method outperforms the previous methods in removing the noise while preserving edge information and detail enhancement.

The Vaguelette-Curvelet Decomposition for Image Deblurring

  • Cho, Changhun;Katsaggelos, Aggelos K.;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.140-147
    • /
    • 2013
  • We present a vaguelette-curvelet decomposition based image deblurring algorithm. We first perform denoising based on the hard-thresholding rule by estimating unknown curvelet coefficients. The proposed algorithm then calculates vaguelette functions by deconvolving the curvelet bases by the point spread function. Vaguelette transform is finally performed to make a clearly restored image. Since the proposed algorithm uses the curvelet transform to sensitively express the edges in all directions, it is possible to restore images with more naturally preserved edges in all directions.

  • PDF

Image Denoising Via Structure-Aware Deep Convolutional Neural Networks (구조 인식 심층 합성곱 신경망 기반의 영상 잡음 제거)

  • Park, Gi-Tae;Son, Chang-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.85-95
    • /
    • 2018
  • With the popularity of smartphones, most peoples have been using mobile cameras to capture photographs. However, due to insufficient amount of lights in a low lighting condition, unwanted noises can be generated during image acquisition. To remove the noise, a method of using deep convolutional neural networks is introduced. However, this method still lacks the ability to describe textures and edges, even though it has made significant progress in terms of visual quality performance. Therefore, in this paper, the HOG (Histogram of Oriented Gradients) images that contain information about edge orientations are used. More specifically, a method of learning deep convolutional neural networks is proposed by stacking noise and HOG images into an input tensor. Experiment results confirm that the proposed method not only can obtain excellent result in visual quality evaluations, compared to conventional methods, but also enable textures and edges to be improved visually.

Image Dehazing Enhancement Algorithm Based on Mean Guided Filtering

  • Weimin Zhou
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.417-426
    • /
    • 2023
  • To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.

Low-light Image Enhancement Based on Frame Difference and Tone Mapping (프레임 차와 톤 매핑을 이용한 저조도 영상 향상)

  • Jeong, Yunju;Lee, Yeonghak;Shim, Jaechang;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.9
    • /
    • pp.1044-1051
    • /
    • 2018
  • In this paper, we propose a new method to improve low light image. In order to improve the image quality of a night image with a moving object as much as the quality of a daytime image, the following tasks were performed. Firstly, we reduce the noisy of the input night image and improve the night image by the tone mapping method. Secondly, we segment the input night image into a foreground with motion and a background without motion. The motion is detected using both the difference between the current frame and the previous frame and the difference between the current frame and the night background image. The background region of the night image takes pixels from corresponding positions in the daytime image. The foreground regions of the night image take the pixels from the corresponding positions of the image which is improved by the tone mapping method. Experimental results show that the proposed method can improve the visual quality more clearly than the existing methods.

Determination of Noise Threshold from Signal Histogram in the Wavelet Domain

  • Kim, Eunseo;Lee, Kamin;Yang, Sejung;Lee, Byung-Uk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.156-160
    • /
    • 2014
  • Thresholding in frequency domain is a simple and effective noise reduction technique. Determination of the threshold is critical to the image quality. The optimal threshold minimizing the Mean Square Error (MSE) is chosen adaptively in the wavelet domain; we utilize an equation of the MSE for the soft-thresholded signal and the histogram of wavelet coefficients of the original image and noisy image. The histogram of the original signal is estimated through the deconvolution assuming that the probability density functions (pdfs) of the original signal and the noise are statistically independent. The proposed method is quite general in that it does not assume any prior for the source pdf.

Analog Satellite Receiver Oriented Aerial Image Enhancement Method using Deep Auto Encoders (Deep Auto Encoder 를 이용한 아날로그 위성 수신기 지향 항공 영상 향상 방법)

  • De Silva, K. Dilusha Malintha;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.52-54
    • /
    • 2022
  • Aerial images are being one of the important aspects of satellite imagery, delivers effective information on landcovers. Their special characteristics includes the viewpoint from space which clarifies data related to land examining processes. Aerial images taken by satellites employed radio waves to wirelessly transmit images to ground stations. Due to transmission errors, images get distorted and unable to perform in landcover examining. This paper proposes an aerial image enhancement method using deep autoencoders. A properly trained autoencoder can enhance an aerial image to a considerable level of improvement. Results showed that the achieved enhancement is better than that was obtained from traditional image denoising methods.