• Title/Summary/Keyword: Image Wall

Search Result 567, Processing Time 0.024 seconds

ELECTRO-MICROSCOPE BASED 3D PLANT CELL IMAGE PROCESSING METHOD

  • Lee, Choong-Ho;Umeda Mikio;Takesi Sugimoto
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.227-235
    • /
    • 2000
  • Agricultural products are easily deformable its shape because of some external forces. However, these force behavior is difficult to measure quantitatively. Until now, many researches on the mechanical property was performed with various methods such as material testing, chemical analysis and non-destructive methods. In order to investigate force behavior on the cellular unit of agricultural products, electro-microscope based 3D image processing method will contribute to analysis of plant cells behavior. Before image measurement of plant cells, plant sample was cut off cross-sectioned area in a size of almost 300-400 ${\mu}$ m units using the micron thickness device, and some of preprocessing procedure was performed with fixing and dyeing. However, the wall structure of plant cell is closely neighbor each other, it is necessary to separate its boundary pixel. Therefore, image merging and shrinking algorithm was adopted to avoid disconnection. After then, boundary pixel was traced through thinning algorithm. Each image from the electro-microscope has a information of x,y position and its height along the z axis cross sectioned image plane. 3D image was constructed using the continuous image combination. Major feature was acquired from a fault image and measured area, thickness of cell wall, shape and unit cell volume. The shape of plant cell was consist of multiple facet shape. Through this measured information, it is possible to construct for structure shape of unit plant cell. This micro unit image processing techniques will contribute to the filed of agricultural mechanical property and will use to construct unit cell model of each agricultural products and information of boundary will use for finite element analysis on unit cell image.

  • PDF

Dark-Blood Computed Tomography Angiography Combined With Deep Learning Reconstruction for Cervical Artery Wall Imaging in Takayasu Arteritis

  • Tong Su;Zhe Zhang;Yu Chen;Yun Wang;Yumei Li;Min Xu;Jian Wang;Jing Li;Xinping Tian;Zhengyu Jin
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.384-394
    • /
    • 2024
  • Objective: To evaluate the image quality of novel dark-blood computed tomography angiography (CTA) imaging combined with deep learning reconstruction (DLR) compared to delayed-phase CTA images with hybrid iterative reconstruction (HIR), to visualize the cervical artery wall in patients with Takayasu arteritis (TAK). Materials and Methods: This prospective study continuously recruited 53 patients with TAK (mean age: 33.8 ± 10.2 years; 49 females) between January and July 2022 who underwent head-neck CTA scans. The arterial- and delayed-phase images were reconstructed using HIR and DLR. Subtracted images of the arterial-phase from the delayed-phase were then added to the original delayed-phase using a denoising filter to generate the final-dark-blood images. Qualitative image quality scores and quantitative parameters were obtained and compared among the three groups of images: Delayed-HIR, Dark-blood-HIR, and Dark-blood-DLR. Results: Compared to Delayed-HIR, Dark-blood-HIR images demonstrated higher qualitative scores in terms of vascular wall visualization and diagnostic confidence index (all P < 0.001). These qualitative scores further improved after applying DLR (Dark-blood-DLR compared to Dark-blood-HIR, all P < 0.001). Dark-blood DLR also showed higher scores for overall image noise than Dark-blood-HIR (P < 0.001). In the quantitative analysis, the contrast-to-noise ratio (CNR) values between the vessel wall and lumen for the bilateral common carotid arteries and brachiocephalic trunk were significantly higher on Dark-blood-HIR images than on Delayed-HIR images (all P < 0.05). The CNR values were significantly higher for Dark-blood-DLR than for Dark-blood-HIR in all cervical arteries (all P < 0.001). Conclusion: Compared with Delayed-HIR CTA, the dark-blood method combined with DLR improved CTA image quality and enhanced visualization of the cervical artery wall in patients with TAK.

Experimental Study on the Wake Characteristics of a Perforated Vertical Wall with Gap in the 2-Dimensional Flow (2차원 흐름 중에 놓인 틈새를 갖는 수직벽 후류 특성에 관한 실험적 연구)

  • Jo Dae-Hwan;Oh Kyoung-Gun;Lee Gyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.135-140
    • /
    • 2005
  • There are cofferdam and watertight wall to prevent of circulation or pollution during building of ocean structures like a dam and bridge in the harbors area and the sea. Inflow fluid and base of structure is important thing as one of the structural design factors for this interception wall like a cofferdam and watertight wall. In this study, it is revealed that at least 500 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics. The turbulent shear flow around a surface-mounted vertical wall was investigated by using the two-frame PIV(CACTUS 3.1) system and Mean velocity distributions have also been measured in the whole flow field.

  • PDF

Landscape Design for Renovation of the Second Namsan Tunnel (남산2호터널 조형물 설계)

  • 김신원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.63-69
    • /
    • 2002
  • The Second Namsan Tunnel required renovation. The landscape design was conducted as part of the comprehensive programs for renovation. The landscape design covered site analysis, design development, a working drawing and a maintenance plan. In May of 2001, the Second Namsan Tunnel was renovated and reopened to traffic. The tunnel was recreated as a new type of tunnel with function and beauty. The entrance and retaining wall of the tunnel has public character. Users are greatly affected by the entrance and retaining walls along roads. The landscape architect had to find new materials and methods to improve the environment and to combine artwork with the entrance and walls of the tunnel. The surface of the tunnel entrance and retaining walls are artistically treated with ceramic tiles and paint. Various regional characteristics and cultural meaning are symbolically expressed. Or the tunnel entrance from the Joong-gu side, entitled "Glory of the Future", the hibiscus symbolizes the bright and glorious future of Korea. On the retaining walls, entitled "Hope", the promising Joong-gu is symbolized through image of Korean magpies, mountains, rocks, roses, winds and nature. As for the tunnel entrance from the Yongsan-gu side, entitled "Vivid Spirit", pine trees symbolize the Koreans′strong will and an enterprising spirit. On the retaining walls, entitled "Lively Motions", Yongsan-gu is symbolized through image of pigeons, mountains, rocks, roses, winds and clear skys. The entrance and retaining wall of the Second Namsan Tunnel, whose surfaces are treated with tiles and paint with artistic value, would create an atmosphere using large-scale wall paintings. In this artwork, users would perceive a unique sense of place through the symbolic images of the vertical planes of the tunnel.

Computer Analysis of Kinematic Parameters of the Intact Heart Using X-ray Image Sequence (X-ray 영상을 이용한 심장운동해석에 관한 연구)

  • Min, Byeong-Gu;Kim, Seong-Wan;Kim, Hui-Chan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.4
    • /
    • pp.101-112
    • /
    • 1985
  • It is important to extract the mechanical informations from the image sequences of the moving object. We have studied the computer algorithms for analysis of the moving heart using X-ray image sequence. A new mathematical method was developed to estimate the local epicardial deformation, wall thickness, and the regional circumferential and longitudinal wall stress using biplane coronary cineangiograms. In this method, the motion images of the coronary artery bifurca-tion points were used as natural landmarks for the kinematic analysis of the ventricular deformation. In four dogs and a normal patient's coronary cineangiograms, the estimation results show the validity of the present analysis, compared with the experimental results based upon the implanted markers. Thus, the present method provides a new method of evaluating the regional wall deformation and wall stress together with the blood vessel conditions using the coronary cineangiography procedure.

  • PDF

Measuring abutment convergence angles using stereovision dental image processing system

  • Yang, Hong-Seok;Park, Ji-Man;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.259-265
    • /
    • 2014
  • PURPOSE. The purpose of this study was to develop a dental image processing system using a three-dimensional (3D) camera and stereovision technology. The reliability of the system for measuring axial wall convergence angles was evaluated. MATERIALS AND METHODS. The new system predicted 3D coordinate points from 2D images and calculated distances and angles between points. Two examiners measured axial wall convergence angles for seven artificial abutments using a traditional tracing-based method (TBM) and the stereovision-based method (SVBM). Five wax abutment models of simplified abutment forms were made and axial wall convergence angles of wax models were measured by both methods. The data were statistically analyzed at the level of significance, 0.05. RESULTS. Intraclass correlation coefficients showed excellent intra-examiner and inter-examiner reliabilities for both methods. Bland-Altman plots and paired t-tests showed significant differences between measurements and true values using TBM; differences were not significant with SVBM. CONCLUSION. This study found that the SVBM reflected true angle values more accurately than a TMB and illustrated an example of 3D computer science applied to clinical dentistry.

Cell Wall Structure of Various Tropical Plant Waste Fibers

  • Abdul Khalil, H.P.S.;Siti Alwani, M.;Mohd Omar, A.K.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • A comparative study of the structure and organization of the primary and secondary walls in different types of tropical plant waste fibers was carried out using transmission electron microscopy (TEM). The thickness of each layer was also measured using Image Analyzer. TEM micrographs haveconfirmed that cell wall structure of all six types of tropical plant waste fibers (empty fruit bunch, oil palm frond, oil palm trunk, coir, banana stem and pineapple leaf) has the same ultrastructure with wood fibre. The fibers consisted of middle lamella, primary and thick secondary wall with different thickness for different types of fibers. The secondary wall was differentiated into a $S_1$ layer, a unique multi-lamellae $S_2$ layer, and $S_3$ layer.

Use of Modern Microscopes in Analysing Fiber and Paper Properties (II)-New Aspect in Fibrillation of Pulp Fibers during Refining-

  • Kim, Chul-Hwan;Keigh R. Wadhams
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.60-67
    • /
    • 1999
  • The CLSM and the image analysis technique enhanced observation of fiber wall fibrillation occurred in both the outer and the fiber wall surfaces during refining by non-destructive techniques. In the early stages of refining, it was well observed that a partial separation between the S1 and S2 layer in the secondary wall was made generating a space in the wet fiber walls . With further refining, it was clearly shown that the shear forces imparted by the refiner bar surfaces caused the S1 layer to become totally separated from the S2 layer as well as creating microfibrils. Furthermore, the fibrillation in the inner fiber wall surfaces could be due to the normal force (Fn) by refiner bars, friction force between a fiber and refiner bars (Fs) and inner friction force between fiber walls(fs). It was confirmed that the concept of fibrillation should be extended to fibrillation in the inner fiber wall surfaces as well as internal and external fribrillation.

  • PDF

Experimental study of the Concentric Cylinder Flow with Various Axial Slit Wall (다양한 축방향 홈이 있는 동심원통 내부 유동에 대한 실험적 연구)

  • Lee, Sang-Hyuk;Kim, Hyoung-Bum
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.123-127
    • /
    • 2007
  • The effect of axial slit wall of outer cylinder on Taylor-Couette flow was experimentally investigated. The axial slits were azimuthally located along the inner wall of outer cylinder and the number of slits was 6, 9 and 18. The radius ratio and aspect ratio of the experimental models was 0.825 and 48, respectively. We used PIV method to measure the flow field and applied refractive index matching method to resolve the image distortion due to the complex model geometry. The results showed the effect of slit on the flow transition is increased as the number of slit increased. When the model has 6 slits, there were hardly the effect of axial slit wall and the flow transition happened at the same Reynolds number of plain smooth wall model case.

  • PDF

Optically Compensated Bend Cell with Pixel-Isolating Polymer Wall for a Flexible Display Application

  • Lee, Seong-Ryong;Lee, Joong-Ha;Jang, Hong-Jeek;Yoon, Tae-Hoon;Kim, Jae-Chang
    • Journal of Information Display
    • /
    • v.8 no.4
    • /
    • pp.5-9
    • /
    • 2007
  • We demonstrate an optically compensated bend (OCB) cell with pixel-isolating polymer wall. The polymer wall is formed by anisotropic phase separation of LCs and UV-curable polymer. The fabricated cell is initially in ${\pi}-twisted$ state so that it shows uniform and fast bend transition without any transition nucleus. The proposed cell has lower driving voltage than conventional OCB cell. Also, the polymer wall provides mechanical stability, hence preventing distortion of display image from external pressure.