Browse > Article

Cell Wall Structure of Various Tropical Plant Waste Fibers  

Abdul Khalil, H.P.S. (School of Industrial Technology, Universiti Sains Malaysia)
Siti Alwani, M. (School of Industrial Technology, Universiti Sains Malaysia)
Mohd Omar, A.K. (School of Industrial Technology, Universiti Sains Malaysia)
Publication Information
Journal of the Korean Wood Science and Technology / v.35, no.2, 2007 , pp. 9-15 More about this Journal
Abstract
A comparative study of the structure and organization of the primary and secondary walls in different types of tropical plant waste fibers was carried out using transmission electron microscopy (TEM). The thickness of each layer was also measured using Image Analyzer. TEM micrographs haveconfirmed that cell wall structure of all six types of tropical plant waste fibers (empty fruit bunch, oil palm frond, oil palm trunk, coir, banana stem and pineapple leaf) has the same ultrastructure with wood fibre. The fibers consisted of middle lamella, primary and thick secondary wall with different thickness for different types of fibers. The secondary wall was differentiated into a $S_1$ layer, a unique multi-lamellae $S_2$ layer, and $S_3$ layer.
Keywords
oil palm; banana stem; coir; pineapple leaf; cell wall structure; transmission electron microscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Grunwald, C., K. Ruel, and U. Schmitt. 2002. Differentiation of xylem cells in rolC transgenic aspen trees: a study of secondary cell wall development. Ann. For. Sci. 59: 679-685   DOI
2 Bai S. L., R. K. Y. Li, L. C. M Wu, H. M. Zheng, and Y. W. Mai. 1998. Tensile failure mechanisms of sisal fibers in composites. Journal of Materials Science Letters. 17(21): 1805-1807   DOI   ScienceOn
3 Booker, R. E. and J. Sell. 1998. The nanostructure of the cell wall of softwoods and its functions in a living tree. Holz-als-Roh-Und Werk-stoff 56: 1-8   DOI
4 Koch, G. and G. Kleist. 2001. Application of scanning UV micro spectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55: 563-567   DOI   ScienceOn
5 Mansor H. and A. R. Ahmad. 1991. Chemical composition of the oil palm trunk. Proc. Seminar Oil Palm Trunk & Other Palmwood Utilization, PORIM, Kuala Lumpur, pp. 335-342
6 Cordeiro, N., M. N. Belgacem, I. C. Torres, and J. C. V. P. Moura. 2004. Chemical compositition and pulping of banana pseudo-stem. Industrial Crops and Products 19: 147-154   DOI   ScienceOn
7 Harada, H. 1964. Ultrastructure and organization of gymnosperm cell walls. In: Proceedings of the Advanced Science Seminar Pinebrook Conference Center (ed. by W. A. Cote). pp. 215-234. Syracuse University Press, New York
8 Morvan, C., C. Andeme-Onzighi, R. Girault, D. S. Himmelsbach, A. Driouich, and D. F. Akin. 2003. Building flax fibres: More than one brick in the walls. Plant Physiology and Biochemistry 41: 935-944   DOI   ScienceOn
9 Donaldson, L. A. 1992. Lignin distribution during latewood formation in Pinus radiata D. Don. IAWA Bull. 13: 381-387   DOI
10 Fengel D. and X. Shao. 1984. A chemical and ultrastructural study of the bamboo species Phyllostachys makinoi Hay. Wood Sci. Technol. 18: 103-112   DOI
11 Singh, A., G. Daniel, and T. Nilsson. 2002. High variability in the thickness of the $S_3$ layer in Pinus radiata tracheids. Holzforchung 56: 111-116   DOI   ScienceOn
12 Donaldson L. A. 1996. Determination of lignin distribution in agricultural fibres. Wood Processing Division, New Zealand Forest Research Institute. 4418: 1-25
13 Blanchette, A. R., T. Nilsson, G. F. Daneil, and A. Abad. 1990. Biological degradation of wood. In: Advances in Chemistry Series. Archaeological Wood: Properties, Chemistry and Preservation (ed. by R. M. Rowell and R. J. Barbour.). pp. 141-174. Washington D. C
14 McNeil M., A. G. Darvill, S. C. Fry, and P. Albershiem. 1984. Structure and function of the primary cell walls of plants. Ann. Rev. Plant Physiol. 53: 625-663
15 Dickison, W. 2000. Integrative plant anatomy, New York, Harcourt Academic Press
16 Balashov V., R. D. Preston, G. W. Ripley, and L. C. Spark. 1956. Structure and mechanical properties of vegetable fibres. I. The influence of strain on the orientation of cellulose microfibrils in sisals leaf fibre. Proc. Roy. Soc. B. 146: 460-468
17 Eames, A. J. and L. H. MacDaniels. 1974. An Introduction to Plant Anatomy. New York, MacGraw Hill Book Company
18 John, V. M., M. A. Cincotto, C. Sjostrom, V. Agopyan, and C. T. A. Oliveira. 2005. Durability of slag mortar reinforced with coconut fibre. Cement & Concrete Composites 27: 565-574   DOI   ScienceOn
19 Sjostrom, E. 1993. Wood chemistry, fundamentals and applications. New York, Academic Press
20 MOA (Ministry of Agriculture) Hectareage of Industrial Crops by Types, Malaysia. 2006. Online. Accessed on 18 January 2006. Available on website: http://www.doa.gov.my/doa/main.php?Content=articles&ArticleID=5
21 Mishra, S., A. K. Mohanty, L. T. Drzal, M. Misra, and G. Hinrichsen. 2004. A review on pineapple leaf fibers, sisal fibers and their biocom-posites, Macromol. Mater. Eng., 289: 955-974   DOI   ScienceOn