• 제목/요약/키워드: Image Splicing

검색결과 11건 처리시간 0.02초

마코프 특징을 이용하는 고속 위조 영상 검출 알고리즘 (Fast Image Splicing Detection Algorithm Using Markov Features)

  • 김수민;박천수
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.227-232
    • /
    • 2018
  • 이미지 편집 툴의 발전으로 일반 사용자도 원본 이미지를 조작하여 실제와 다른 영상 정보를 전달하는 것이 가능하게 되었다. 이러한 사회적 변화에 따라 이미지의 신뢰도는 매우 낮아지게 되었고 이미지의 조작여부를 검출하는 시스템의 필요성이 제기되고 있다. 본 논문에서는 마코프 특징을 이용하여 이미지 조작 여부를 검출하는 알고리즘을 제안한다. 제안하는 방법은 전체 입력 이미지에서 마코프 특징을 추출하고, 그 중 위조 여부 검출에 사용되지 않는 불필요한 특징을 제거한다. 따라서 제안하는 기술은 위조 검출에 사용되는 마코프 특징의 수를 감소시켜 전체 검출 속도를 향상시키는 효과가 있다. 실험을 통해 제안하는 방법은 상대적으로 낮은 복잡도로 우수한 위조 검출 성능을 보임을 확인하였다.

접합영상 검출을 위한 효율적인 마코프 특징 추출 방법 (Efficient Markov Feature Extraction Method for Image Splicing Detection)

  • 한종구;박태희;엄일규
    • 전자공학회논문지
    • /
    • 제51권9호
    • /
    • pp.111-118
    • /
    • 2014
  • 본 논문에서는 영상접합 조작 검출을 위한 효율적인 마코프 특징을 추출하는 방법을 제안한다. 제안 방법에서 사용하는 마코프 상태는 이산 코사인 변환 영역에서 인접한 블록간 계수의 차이로 구성되며, 블록간 대칭성을 이용하여 다양한 1차 마코프 천이확률을 접합 검출을 위한 특징으로 추출한다. 아울러 마코프 확률의 분포를 분석하여 특징의 수를 줄이는 방법을 제안한다. 추출된 특징 벡터를 SVM(support vector machine) 분류기를 이용하여 학습한 후 영상의 접합 여부를 판별한다. 실험 결과를 통하여 본 논문의 방법이 기존의 방법보다 적은 수의 특징으로 높은 영상접합 조작 결과를 보임을 확인하였다.

Quaternion Markov Splicing Detection for Color Images Based on Quaternion Discrete Cosine Transform

  • Wang, Jinwei;Liu, Renfeng;Wang, Hao;Wu, Bin;Shi, Yun-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.2981-2996
    • /
    • 2020
  • With the increasing amount of splicing images, many detection schemes of splicing images are proposed. In this paper, a splicing detection scheme for color image based on the quaternion discrete cosine transform (QDCT) is proposed. Firstly, the proposed quaternion Markov features are extracted in QDCT domain. Secondly, the proposed quaternion Markov features consist of global and local quaternion Markov, which utilize both magnitude and three phases to extract Markov features by using two different ways. In total, 2916-D features are extracted. Finally, the support vector machine (SVM) is used to detect the splicing images. In our experiments, the accuracy of the proposed scheme reaches 99.16% and 97.52% in CASIA TIDE v1.0 and CASIA TIDE v2.0, respectively, which exceeds that of the existing schemes.

동시 발생 행렬의 특성함수 모멘트를 이용한 접합 영상 검출 (Spliced Image Detection Using Characteristic Function Moments of Co-occurrence Matrix)

  • 박태희;문용호;엄일규
    • 대한임베디드공학회논문지
    • /
    • 제10권5호
    • /
    • pp.265-272
    • /
    • 2015
  • This paper presents an improved feature extraction method to achieve a good performance in the detection of splicing forged images. Strong edges caused by the image splicing destroy the statistical dependencies between parent and child subbands in the wavelet domain. We analyze the co-occurrence probability matrix of parent and child subbands in the wavelet domain, and calculate the statistical moments from two-dimensional characteristic function of the co-occurrence matrix. The extracted features are used as the input of SVM classifier. Experimental results show that the proposed method obtains a good performance with a small number of features compared to the existing methods.

접합 영상 검출을 위한 마르코프 천이 확률 및 동시발생 확률에 대한 선택적 특징 추출 방법 (Selective Feature Extraction Method Between Markov Transition Probability and Co-occurrence Probability for Image Splicing Detection)

  • 한종구;엄일규;문용호;하석운
    • 한국정보통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.833-839
    • /
    • 2016
  • 본 논문에서는 효율적인 접합 영상 검출을 위한 마르코프 천이 및 동시발생 확률에 대한 선택적 특징 추출 방법을 제안한다. 제안하는 방법에서는 이산 코사인 변환 영역에서 블록간 계수의 차이를 이용하여 특징들을 구성하고, 특징들의 각 위치에서 원 영상과 접합영상의 특징 분포의 상이성을 확인하기 위해 Kullback-Leibler 수렴값을 구한다. 이를 바탕으로, 마르코프 확률 특징과 동시발생 확률 특징 가운데 해당 위치에서 가장 큰 차이값을 갖는 특징을 선택하여 최종 특징으로 선택하고, SVM 분류기를 이용하여 학습 및 테스트한 후 그 유효성을 판별한다. 실험 결과를 바탕으로 제안하는 방법이 기존의 방법보다 제한된 특징수로 높은 영상접합 조작 결과를 보임을 확인하였다.

밴포드 법칙과 색차를 이용한 컬러 영상 접합 검출 (Color Image Splicing Detection using Benford's Law and color Difference)

  • 문상환;한종구;문용호;엄일규
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.160-167
    • /
    • 2014
  • 본 논문에서는 밴포드 법칙과 컬러의 차이를 이용한 영상 접합 조작 검출 방법을 제안하고자 한다. 조작이 의심되는 영상에 대하여 먼저 컬러 변환을 시행한 후, 이산 웨이블릿 변환 및 이산 코사인 변환을 수행한다. 이상적인 밴포드 분포와 의심되는 영상에 대한 밴포드 분포의 차이를 특징으로 추출한다. 아울러 컬러 성분에 대한 밴포드 분포의 차이를 특징으로 사용한다. 본 논문의 방법은 13개의 특징만으로 우수한 접합 영상 검출 성능을 보인다. 추출된 특징 벡터를 SVM(support vector machine) 분류기를 이용하여 학습한 후 영상의 접합 여부를 판별한다. 본 논문의 방법은 기존의 방법보다 적은 수의 특징으로 높은 영상 접합 조작 결과를 보임을 확인하였다.

웨이블릿 계수의 런-길이와 통계적 모멘트를 이용한 접합 영상 검출 (Detection of Spliced Image Using Run-length of Wavelet Coefficients and Statistical Moments)

  • 김태형;한종구;박태희;엄일규
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.152-159
    • /
    • 2014
  • 본 논문에서는 웨이블릿 계수에 대한 런-길이를 도입하고, 웨이블릿 런-길이에 대한 통계적 모멘트를 이용한 영상 접합검출 방법을 제안한다. 영상 접합에 의해 발생된 불연속 에지를 강조하기 위하여, 접합 의심 영상에 대하여 다양한 전처리를 수행하였다. 제안 방법은 웨이블릿 변환이 가지는 다양한 통계적 특성을 사용할 수 있는 장점을 가지고 있다. 본 논문에서는 72개 까지 특징을 추출하였으며, SVM(support vector machine) 분류기를 이용하여 학습 및 검증을 수행하였다. 본 논문의 방법은 기존의 방법과 유사한 영상 접합 조작 결과를 보였으며, 웨이블릿 영역에서의 런-길이가 영상 접합 검출에 유용함을 보였다.

DCT 학습을 융합한 RRU-Net 기반 이미지 스플라이싱 위조 영역 탐지 모델 (A DCT Learning Combined RRU-Net for the Image Splicing Forgery Detection)

  • 서영민;한정우;권희정;이수빈;국중진
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.11-17
    • /
    • 2023
  • This paper proposes a lightweight deep learning network for detecting an image splicing forgery. The research on image forgery detection using CNN, a deep learning network, and research on detecting and localizing forgery in pixel units are in progress. Among them, CAT-Net, which learns the discrete cosine transform coefficients of images together with images, was released in 2022. The DCT coefficients presented by CAT-Net are combined with the JPEG artifact learning module and the backbone model as pre-learning, and the weights are fixed. The dataset used for pre-training is not included in the public dataset, and the backbone model has a relatively large number of network parameters, which causes overfitting in a small dataset, hindering generalization performance. In this paper, this learning module is designed to learn the characterization depending on the DCT domain in real-time during network training without pre-training. The DCT RRU-Net proposed in this paper is a network that combines RRU-Net which detects forgery by learning only images and JPEG artifact learning module. It is confirmed that the network parameters are less than those of CAT-Net, the detection performance of forgery is better than that of RRU-Net, and the generalization performance for various datasets improves through the network architecture and training method of DCT RRU-Net.

  • PDF

잡음종속 Watershed 변환을 이용한 이미지 위조 검출 (Image Forgery Detection Using a Noise Dependent Watershed Transformation)

  • ;이경현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.667-670
    • /
    • 2013
  • Noise is unwanted in high quality images, but it can aid image tampering. For example, noise can be intentionally added in image to conceal tampered regions or to create special visual effects. It may also be introduced unknowingly during camera imaging process, which makes the noise levels inconsistent in splicing images. In this paper, we present an image forgery detection method using a noise dependent watershed transformation. Image is segmented into objects for initial noise estimation by the watershed transformation, and different noise level in objects are estimated to obtain final decision result. Experimental results of the proposed method on natural images are presented.

VR 영상 콘텐츠 제작에 유용한 360도 이미지 제작 방법에 관한 연구 (A Study on 360° Image Production Method for VR Image Contents)

  • 곽대위;정진헌
    • 디지털융복합연구
    • /
    • 제15권12호
    • /
    • pp.543-548
    • /
    • 2017
  • 360도 이미지는 대중에게 이전에 경험하지 못했던 특별한 시각적 경험을 제공한다. 360도 이미지를 제작할 수 있는 방법은 여러 가지가 있지만, 본 논문에서는 기존의 제작방식을 포함하여 간단하며 유효한 두 가지의 제작방법을 제시하고자 한다. 첫 번째 방법으로는 48장의 이미지를 합성하여 한 장의 360도 이미지를 만드는 것이고, 두 번째 방법으로는 6장의 이미지를 사용하여 한 장의 360도 이미지를 제작하는 것이다. 앞서 제시한 두 가지 제작 방식의 특징과 장단점의 비교를 통하여 더욱 간단하면서도 효율적인 제작방식을 선택할 수 있다. 소개를 통하여 제시되는 제작방법은 VR작품 제작의 문턱을 낮출 수 있으며, 일반인들도 360이미지 제작을 더욱 간편하게 할 수 있게 됨으로써 VR영상 콘텐츠 산업이 더욱 발전될 수 있을 것으로 기대한다.