• Title/Summary/Keyword: Image Forgery Detection

Search Result 44, Processing Time 0.07 seconds

Forensic Classification of Median Filtering by Hough Transform of Digital Image (디지털 영상의 허프 변환에 의한 미디언 필터링 포렌식 분류)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.42-47
    • /
    • 2017
  • In the distribution of digital image, the median filtering is used for a forgery. This paper proposed the algorithm of a image forensics detection for the classification of median filtering. For the solution of this grave problem, the feature vector is composed of 42-Dim. The detected quantity 32, 64 and 128 of forgery image edges, respectively, which are processed by the Hough transform, then it extracted from the start-end point coordinates of the Hough Lines. Also, the Hough Peaks of the Angle-Distance plane are extracted. Subsequently, both of the feature vectors are composed of the proposed scheme. The defined 42-Dim. feature vector is trained in SVM (Support Vector Machine) classifier for the MF classification of the forged images. The experimental results of the proposed MF detection algorithm is compared between the 10-Dim. MFR and the 686-Dim. SPAM. It confirmed that the MF forensic classification ratio of the evaluated performance is 99% above with the whole test image types: the unaltered, the average filtering ($3{\times}3$), the JPEG (QF=90 and 70)) compression, the Gaussian filtered ($3{\times}3$ and $5{\times}5$) images, respectively.

Efficient Markov Feature Extraction Method for Image Splicing Detection (접합영상 검출을 위한 효율적인 마코프 특징 추출 방법)

  • Han, Jong-Goo;Park, Tae-Hee;Eom, Il-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.111-118
    • /
    • 2014
  • This paper presents an efficient Markov feature extraction method for detecting splicing forged images. The Markov states used in our method are composed of the difference between DCT coefficients in the adjacent blocks. Various first-order Markov state transition probabilities are extracted as features for splicing detection. In addition, we propose a feature reduction algorithm by analysing the distribution of the Markov probability. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. Experimental results verify that the proposed method shows good detection performance with a smaller number of features compared to existing methods.

LPM-Based Digital Watermarking for Forgery Protection in Printed Materials (인쇄물의 위조 방지를 위한 LPM기반의 디지털 워터마킹)

  • Bae Jong-Wook;Lee Sin-Joo;Jung Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1510-1519
    • /
    • 2005
  • We proposed a digital watermarking method that it is possible to identify the copyright because the watermark is detected in the first print-scan and to protect a forgery because the watermark is not detected in the second print-scan. The proposed algorithm uses LPM and DFT transform for the robustness to the distortion of pixel value and geometrical distortion. This methods could improve watermark detection performance and image quality by selecting maximum sampling radius in LPM transform. After analyzing the characteristics of print-scan process, we inserted the watermark in the experimentally selected frequency bands that survives robustly to the first print-scan and is not detected in the second print-scan, using the characteristic of relatively large distortion in high frequency bands of DFT As the experimental result, the original proof is possible because average similarity degree 5.13 is more than the critical value 4.0 in the first print-scan. And the detection of forgery image is also possible because average similarity degree 2.76 is less than the critical value 4.0 in the second print-scan.

  • PDF

Selective Feature Extraction Method Between Markov Transition Probability and Co-occurrence Probability for Image Splicing Detection (접합 영상 검출을 위한 마르코프 천이 확률 및 동시발생 확률에 대한 선택적 특징 추출 방법)

  • Han, Jong-Goo;Eom, Il-Kyu;Moon, Yong-Ho;Ha, Seok-Wun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.833-839
    • /
    • 2016
  • In this paper, we propose a selective feature extraction algorithm between Markov transition probability and co-occurrence probability for an effective image splicing detection. The Features used in our method are composed of the difference values between DCT coefficients in the adjacent blocks and the value of Kullback-Leibler divergence(KLD) is calculated to evaluate the differences between the distribution of original image features and spliced image features. KLD value is an efficient measure for selecting Markov feature or Co-occurrence feature because KLD shows non-similarity of the two distributions. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. To verify our algorithm we used grid search and 6-folds cross-validation. Based on the experimental results it shows that the proposed method has good detection performance with a limited number of features compared to conventional methods.

A Liveness Detection for Face Recognition System with Infrared Image (적외선 영상을 사용한 얼굴 인식 시스템에서의 위, 변조 영상 판별)

  • Kang, Ji-Woon;Cho, Sung-Won;Chung, Sun-Tae;Kim, Sang-Hoon;Chang, Un-Dong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.429-431
    • /
    • 2008
  • 생체 인식 기술이 사회 전반에 걸쳐 다양하게 사용되어짐에 따라 인식기술 중의 하나인 Face Recognition 은 하루가 다르게 발전하고 있다. 하지만, 그와 함께 해킹방법도 다양화되어지고 있다. 그럼에도 불구하고, 위, 변조 영상 판별(Liveness Detection) 분야에 관련된 연구들은 초기 단계를 벗어나지 못하고 있다. 본 논문에서는 적외선 영상을 이용하여 동공부분의 반사 정도를 이용하여 실제 이미지와 위, 변조 이미지를 판별하는 방법을 제안한다.

  • PDF

Copy-move Forgery Detection Robust to Various Transformation and Degradation Attacks

  • Deng, Jiehang;Yang, Jixiang;Weng, Shaowei;Gu, Guosheng;Li, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4467-4486
    • /
    • 2018
  • Trying to deal with the problem of low robustness of Copy-Move Forgery Detection (CMFD) under various transformation and degradation attacks, a novel CMFD method is proposed in this paper. The main advantages of proposed work include: (1) Discrete Analytical Fourier-Mellin Transform (DAFMT) and Locality Sensitive Hashing (LSH) are combined to extract the block features and detect the potential copy-move pairs; (2) The Euclidian distance is incorporated in the pixel variance to filter out the false potential copy-move pairs in the post-verification step. In addition to extracting the effective features of an image block, the DAMFT has the properties of rotation and scale invariance. Unlike the traditional lexicographic sorting method, LSH is robust to the degradations of Gaussian noise and JEPG compression. Because most of the false copy-move pairs locate closely to each other in the spatial domain or are in the homogeneous regions, the Euclidian distance and pixel variance are employed in the post-verification step. After evaluating the proposed method by the precision-recall-$F_1$ model quantitatively based on the Image Manipulation Dataset (IMD) and Copy-Move Hard Dataset (CMHD), our method outperforms Emam et al.'s and Li et al.'s works in the recall and $F_1$ aspects.

Approximate Detection Method for Image Up-Sampling

  • Tu, Ching-Ting;Lin, Hwei-Jen;Yang, Fu-Wen;Chang, Hsiao-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.462-482
    • /
    • 2014
  • This paper proposes a new resampling detection method for images that detects whether an image has been resampled and recovers the corresponding resampling rate. The proposed method uses a given set of zeroing masks for various resampling factors to evaluate the convolution values of the input image with the zeroing masks. Improving upon our previous work, the proposed method detects more resampling factors by checking for some periodicity with an approximate detection mechanism. The experimental results demonstrate that the proposed method is effective and efficient.

Fragile Watermarking Based on LBP for Blind Tamper Detection in Images

  • Zhang, Heng;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.385-399
    • /
    • 2017
  • Nowadays, with the development of signal processing technique, the protection to the integrity and authenticity of images has become a topic of great concern. A blind image authentication technology with high tamper detection accuracy for different common attacks is urgently needed. In this paper, an improved fragile watermarking method based on local binary pattern (LBP) is presented for blind tamper location in images. In this method, a binary watermark is generated by LBP operator which is often utilized in face identification and texture analysis. In order to guarantee the safety of the proposed algorithm, Arnold transform and logistic map are used to scramble the authentication watermark. Then, the least significant bits (LSBs) of original pixels are substituted by the encrypted watermark. Since the authentication data is constructed from the image itself, no original image is needed in tamper detection. The LBP map of watermarked image is compared to the extracted authentication data to determine whether it is tampered or not. In comparison with other state-of-the-art schemes, various experiments prove that the proposed algorithm achieves better performance in forgery detection and location for baleful attacks.

Image Watermarking for Identification Forgery Prevention (신분증 위변조 방지를 위한 이미지 워터마킹)

  • Nah, Ji-Hah;Kim, Jong-Weon;Kim, Jae-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.552-559
    • /
    • 2011
  • In this paper, a new image watermarking algorithm is proposed which can hide specific information of an ID card's owner in photo image for preventing ID's photo forgery. Proposed algorithm uses the image segmentation and the correlation peak position modulation of spread spectrum. The watermark embedded in photo ensures not only robustness against printing and scanning but also sufficient information capacity hiding unique number such as social security numbers in small-sized photo. Another advantage of proposed method is extracting accurate information with error tolerance within some rotation range by using $2^h{\times}2^w$ unit sample space not instead $1{\times}1$ pixels for insertion and extraction of information. 40 bits information can be embedded and extracted at $256{\times}256$ sized ID photo with BER value of 0 % when the test condition is 300dpi scanner and photo printer with 22 photos. In conclusion, proposed algorithm shows the robustness for noise and rotational errors occured during printing and scanning.

Deep Learning Based Fake Face Detection (딥 러닝 기반의 가짜 얼굴 검출)

  • Kim, DaeHee;Choi, SeungWan;Kwak, SooYeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.5
    • /
    • pp.9-17
    • /
    • 2018
  • Recently, the increasing interest of biometric systems has led to the creation of many researches of biometrics forgery. In order to solve this forgery problem, this paper proposes a method of determining whether a synthesized face made of artificaial intelligence is real face or fake face. The proposed algorithm consists of two steps. Firstly, we create the fake face images using various GAN (Generative Adversarial Networks) algorithms. After that, deep learning algorithm can classify the real face image and the generated face image. The experimental results shows that the proposed algorithm can detect the fake face image which looks like the real face. Also, we obtained the classification accuracy of 88.7%.