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Abstract 
 

This paper proposes a new resampling detection method for images that detects whether an 
image has been resampled and recovers the corresponding resampling rate. The proposed 
method uses a given set of zeroing masks for various resampling factors to evaluate the 
convolution values of the input image with the zeroing masks. Improving upon our previous 
work, the proposed method detects more resampling factors by checking for some periodicity 
with an approximate detection mechanism. The experimental results demonstrate that the 
proposed method is effective and efficient. 
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1. Introduction 

Rapid development of techniques over the past decades have enabled people to easily 
acquire images and share or transfer them through the Internet. These images are easily 
modified or further synthesized by existing image-processing software for certain purposes. 
Such image  manipulation might violate the copyright or illegitimately cause a bad result. To 
combat these illegitimate practices, we urgently need algorithms that can detect such forgeries. 

In recent years, many forgery-detection methods have been proposed. Popescu et al. [1] 
and Kirchner [2] detected forgeries with resampling or rotation by checking for some 
periodicity in the images. Nillius et al. [3] and Johnson et al. [4] detected digital forgeries by 
detecting the lighting consistencies. Li et al. [5] detected tampered watermarked images with 
the embedded information and recovered the images using methods that are similar to those in 
[6, 7]. Camera defects such as chromatic aberration [8] and sensor pattern noise [9-12], as well 
as the color filter arrays [1] that cameras use to interpolate colors, can be used to detect 
forgeries. Copy-move images are easily made by copying certain regions and pasting them on 
some other regions. Some methods have been proposed to detect these types of forged images 
[13-18]. 

Resampling is frequently involved in image forgeries, which motivates us to study the 
detection of such image manipulation. Most existing resampling-detection methods [1, 2] can 
detect resampling but cannot recover the resampling factors (or resampling rates). The method 
proposed by Lien et al. [19] addresses the recovery of the resampling rates, but it can only 
recover the resampling factors with the provided corresponding weighting tables and must use 
weighting tables to recover the possible original image and examine the periodicity. 
Furthermoer, their work is notably time-consuming, and false positive may be caused when 
the set of weighting tables is not sorted in specific orders. 

We have previously proposed an algorithm [20] to detect a wider range of resampling 
factors in less time by providing a set of zeroing masks. However, the detectable resampling 
factor must correspond to a zeroing mask in the provided set. In other words, the amount of 
detectable resampling factors is exactly identical to the number of zeroing masks that are 
provided for detection. The objective of this paper is to overcome this limitation of our 
previous work and detect many more factors than the number of provided zeroing masks. If an 
image is resampled by a factor that corresponds to a provided zeroing mask, then the exact 
resampling factor can be detected; otherwise, the image will be further detected using an 
approximate detection mechanism. Therefore, the proposed method is more applicable. 

The remainder of this paper is organized as follows. The basic concept of resampling and a 
review of our previous work are introduced in Section 2. In Section 3, the proposed method of 
approximate resampling detection is described. Section 4 presents some experimental results, 
and Section 5 concludes. 

2. Overview of Exact Resampling Detection 

In this section, we will briefly introduce the basic concept of resampling and the exact 
resampling detection that was proposed in our previous work [20]. 
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2.1 Resampling 
Resampling is the mathematical technique to create a new version of the image with a different 
width and/or height in pixels. Increasing the image size is called upsampling; reducing its size 
is called downsampling. 

Resampling of a 2-D image can be broken down into two 1-D resampling passes. In one 
pass, horizontal resampling is performed by producing an image with a different width but the 
same height. In the next pass, this intermediate image is resampled vertically to change its 
height while maintaining the width. This process is much more computationally efficient than 
combining the work into one pass. Upsampling involves interpolating among the existing 
pixels to estimate their values at the new pixel locations. Downsampling involves computing 
the weighted average of the original pixels that overlap each new pixel. Color images are 
treated like three grey-scaled images which are separated from the original image, individually 
resampled, and finally recombined to create the final image. 

For 2-D resampling, each dimension can be separately resampled and detected. To easily 
explain, we will first describe one-dimensional resampling [1]. 

Let x[t] be a 1-D discrete signal with n samples to be sampled. The number of samples in 
signal x[t] can be resampled using a factor of p/q to create a new sample y[t] with m samples as 
follows: 

1. Up-sample: Create a new signal xu[pt] = x[t], where t = 1, 2, …, n, and xu[pt] = 0 
otherwise. 

2. Interpolate: Convolve xu[t] with a low-pass filter h[t]: xi[t] = xu[t]*h[t]. 
3. Down-sample: Create a new signal xd[t] with m samples, where xd[t] = xi[qt], and t = 1, 

2, …, m. Denote the resampled signal as y[t] = xd[t]. 
Different types of resampling algorithms (e.g., linear cubic) differ in the form of the 

interpolation filter in Step 2. In this study, we assume that the linear interpolation filter is used. 
Because all three steps in the signal resampling are linear, this process can be described with a 
linear transformation as shown in (1). 

 
,/ xAy qp=  (1) 

 
where Ap/q is the transformation matrix of size m×n. Depending on the resampling fraction, 

the resampling process introduces correlations of varying degrees among the neighboring 
samples. For example, consider the upsampling of a signal by a factor of two. In this case, the 
resampling matrix takes the following form: 
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Here, the odd samples of the resampled signal y = [y1 y2 …ym]t take on the values of the 
original signal x = [x1 x2 …xn]t; i.e., y2i-1 = xi, i = 1, 2, …, n, where yj = y[j] and xj = x[j]. The 
even samples are the averages of the adjacent neighbors of the original signal: 

 
,5.05.0 12 +⋅+⋅= iii xxy  (3) 

 
where i = 1, 2, …, n-1. Because xi = y2i-1 and xi+1 = y2i+1, the above relationship can be 
expressed in terms of only the resampled samples: 

 
.5.05.0 12122 +− ⋅+⋅= iii yyy  (4) 

 
In other words, across the entire resampled signal, each even sample is precisely the same 

linear combination of its adjacent neighbors. According to this description, we will use the 
relation among the pixels and their neighbors to detect resampling.  

2.2 Constructing Resampling Matrices 
In this subsection, we describe how our previous work [20] constructed the resampling 
matrices. For a matrix A, let A[r1..r2, c1..c2] denote the sub-matrix of A that is formed with the 
entries between rows r1 and r2, and between columns c1 and c2. It can be observed that the 
matrix Ap/q is periodically composed of its sub-matrix Ap/q[1..p, 1..q+1]. For example, the 
matrix A4/3 is periodically composed of the sub-matrix A4/3[1..4, 1..4]. This result can be 
described as follows. 

 
],4..1,4..1[]34..31,44..41[ 3/43/4 AkkkkA =++++                                  (5) 

 
for every integer k with 0 < 4k < m and 0 < 3k < n, or 0 < k < min{m/4, n/3}.To be more general, 
we have 
 

],1..1,..1[]1..1,..1[ // +=+++++ qpAqkqqkpkppkA qpqp                       (6) 
 

for every integer k with 0 < pk < m and 0 < qk < n, or 0 < k < min{m/p, n/q}. 
Because of the periodicity, it is sufficient to consider only the (p+1)×(q+1) sub-matrix 

Ap/q[1..p+1, 1..q+1] for any resampling matrix Ap/q. We called the sub-matrix Ap/q[1..p+1, 
1..q+1] the primary sub-matrix of Ap/q. For simplicity, when we refer to a resampling matrix 
Ap/q, we mean its primary sub-matrix. (7) and (8) show the newly defined matrices A2/1 and A5/3, 
respectively, from each of which we can see that the entries are symmetric to the center of the 
matrix; in other words, Ap/q[i, j] = Ap/q[p+2-i, q+2-j] for i = 1, 2, …, p+1 and j = 1, 2, …, q+1. 
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Again, for simplicity, we assume that q = 1 or p and q are coprime (or relatively prime) 
positive integers. For 1≤ q < p≤ 12, there are 45 factors p/q, which are composed as listed 
below: 
p = 2, q = 1;                 
p = 3, q = 1, 2; 
p = 4, q = 1, 3;  
p = 5, q = 1~4;              
p = 6, q = 1, 5; 
p = 7, q = 1~6;              
p = 8, q = 1, 3, 5, 7;  
p = 9, q = 1, 2, 4, 5, 7, 8;  
p = 10, q = 1, 3, 7, 9;  
p = 11, q = 1~10;  
p = 12, q = 1, 5, 7, 11. 
 

It can be further observed from (7) and (8) that every row except the top row and the bottom 
row in a resampling matrix Ap/q has exactly two nonzero entries, which are adjacent in the row. 
The nonzero entries in row i are ( ) ppqip /mod))1(( ⋅+−  and ( ) ppqi /mod))1(( ⋅+ . Assume that 
the nonzero entries in row i ( 12 −≤≤ pi ) are located in the jth and (j+1)th columns. Then, the 
nonzero entries in row i + 1 are in the (j+1)th and (j+2)th columns if pqip mod))1(( ⋅+−  
< ;mod))2(( pqip ⋅+−  and in the jth and (j+1)th columns otherwise. The general form of the 
resampling matrix Ap/q is given in (9), where ( ) ppqipi /mod)( ⋅−=β , i = 1, 2, …, p-2, denotes 
the first nonzero entry in the (i+1)th row of Ap/q. Let rβ be in column c(r) of Ap/q then 

.)](),1[(/ rqp rcrA β=+  If 1+> rr ββ (or pqrp mod)( ⋅−  > pqrp mod))1(( ⋅+− ), then rβ  and 

`1+rβ must be in the same column, i.e., c(r+1) = c(r); otherwise, c(r+1) = c(r) + 1. 
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As shown in (9), assume that 1+> ii ββ  (or pqrp mod)( ⋅− > pqrp mod))1(( ⋅+− ), for i 
= r+1, r+2, …r+k, and kr+β < `1++krβ  (or pqkrp mod))(( ⋅+−  < pqkrp mod))1(( ⋅++− ), 
then c(r) +1 = c(r+1) = c(r+2) = ...= c(r+k) = c(r+k+1) - 1. For each row between the 3rd row 
and the (p-1)th row where its first nonzero entry is located at the same column as the first 
nonzero entry in the preceding row, we called it the following row. It can be observed that the 
matrix Ap/q possesses a following row only when p > q+1. For instance, the 4th row of the 
matrix A5/3 is a following row. 

The sequence of the entry pairs ),1,(( 11 ββ − ),1,( 22 ββ −  ))1,(, 22 −− − pp ββ is symmetric, 
i.e., ipi −−−= 11 ββ  for i = 1, 2, …,  2/)1( −p . 

With the above observation, we may determine the content of any resampling matrix Ap/q. 
The algorithm Resampling Matrix Construction (RMC) [20] that derives the resampling 
matrices is given as follows. 

 
Algorithm RMC 
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2.3 Deriving Zeroing Masks 
With the above assumption for resampling matrices, we consider only the first q + 1 samples 

of the signal x to be resampled, say x[t], t = 1, 2, …, q + 1, and the first p + 1 samples of the 
resampled signal y, say y[t], t = 1, 2, …, p + 1. As a result, we write the relationship in (4) (with 
i = 1) for the signal that is resampled by a fraction of 2/1 to: 

 
05.05.0 321 =⋅−+⋅− yyy                                                                          (10) 

 
which indicates that the convolution of signal y with the 3×1 filter F2/1 = [-0.5 1 -0.5] zeroes 
the samples of y. We call this filter a zeroing mask for the resampling factor 2/1. Of course, 
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any resampled signal can be zeroed using a zero filter (a zero vector), which cannot be used to 
detect resampling. From now on, we are only interested in nonzero zeroing filters. 

We have proved in our work that there is a nonzero zeroing mask for any resample factor p/q, 
where p and q are coprime positive integers and p > q, or that there is a (p+1)×1 zeroing filter 
Fp/q = [α1 α2 ... αp+1], where αi’s are not all zeros, such that for any resampled signal y by factor 
p/q, the following relation holds. 

 

,0
1

1
=⋅∑

+

=

p

t
tt yα                                                                                  (11) 

 
which is equivalent to the convolution of y with Fp/q: 
 

,0/ =∗ yF qp                                                                                    (12) 
 

where yFyF qpqp // =∗  if y is of size (p+1)×1 and t
qp yF /  if y is of size 1×(p+1). Assuming 

that y is of size (p+1)×1, substituting (1) in (12) yields: 
 

,0// =xAF qpqp                                                                               (13) 
 

Because the relation in (13) holds for every vector x, t
qp

t
qp FA //

 must be a zero vector, as 
shown in (14), which can be regarded as a linear system of q + 1 equations with p + 1 
unknowns. 
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qp FA //
 0                                                                             (14) 

 
As an example, considering the resampling by a fraction of 5/3; then, (11) becomes 
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Substituting xAy 3/5=  in (15) yields 
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which is equivalent to 
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Because (17) holds for any signal x, the coefficient for each xi in (17) must be zero, i.e., 
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(18) forms a system of 4 linear equations with 6 unknowns to solve the zeroing filter Fp/q and is 
equivalent to the relation =tt FA 3/53/5 0 or the matrix equation: 
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Thus, the matrix equation that corresponds to the fraction p/q, as shown in (14), represents a 
system of q+1 linear equations with p+1 unknowns. 

Two masks M = [ Kmmm 21 ] and M’ = [ ''' 21 Kmmm  ] are considered equivalent if M = 
cM’ (or cmm ii ='/  for i = 1, 2, …, K) for some constant c. Two equivalent masks zero the same 
set of signals. Hence, a solution for a zeroing mask corresponds to a set of parallel vectors (M 
and M’ are considered two parallel vectors), which can be considered a 1-D vector space. 
Therefore, for p≥ q+2 (or p-q≥ 2), there is an infinite amount of nonequivalent zeroing masks 
for the resample fraction p/q. To unify equivalent zeroing masks and exclude the zero zeroing 
mask, we fix the first element 11 =α  for every mask Fp/q = [

121 +pααα  ]. This action is 
equivalent to adding the equation 11 =α  in each of the aforementioned systems. This setting 
can also avoid trivial solutions or the solution of the zero filter. For example, adding the 
equation 11 =α  into (18) forms a nonhomogeneous linear system, as shown in (20), which is 
equivalent to the matrix form in (21). 
 














=+⋅
=⋅+⋅+⋅
=⋅+⋅+⋅

=⋅+
=

04.0
06.08.02.0
02.08.06.0

04.0
1

65

543

432

21

1

αα
ααα
ααα

αα
α

                                                           (20) 























=

















































0
0
0
0
1

14.00000
06.08.02.000
002.08.06.00
00004.01
000001

6

5

4

3

2

1

α
α
α
α
α
α

                                            (21) 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, Feb. 2014                                     470 
Copyright ⓒ 2014 KSII 

The zeroing masks for the resample factor 5/3 can be obtained by solving the 
nonhomogeneous linear system in  (20) or (21). In general, the zeroing mask Fp/q for the 
resample factor p/q can be obtained by solving the following nonhomogeneous linear system. 

 
,2// += q
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qpqp IFE                                                                                                 (22) 
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kkI ]0001[ = denotes a unit column matrix with a size of k×1, and 

Fp/q = [ 121 +pααα  ] is a row matrix of size 1×(p+1) that consists of p+1 variables. Therefore, 

qpE /  is a matrix of size (q+2)×(p+1) with the submatrix t
pI 1+  at its top row, i.e., qpE / [1..1, 

1..p+1] = t
pI 1+ , and qpE / [2..q+1, 1..p+1] = t

qpA / . The general form of qpA / , which is given in 
(9), yields the expanded form of qpE / . 

2.4 Detecting Resampling with Zeroing Masks 
Image resampling by any factor can be detected by evaluating the convolution of the image 

with a sequence of zeroing masks. As follows, the algorithm ZMD (zeroing mask derivation) 
[20] generates a zeroing mask that corresponds to any resampling factor p/q and the algorithm 
UD (up-sampling detection) [20] detects resampling with a set of provided zeroing masks. To 
detect resampling by factor p/q on an image region I, we use a resampling score function rs, as 
provided in (23), to evaluate the confidence value of resampling, where B(I) is the set of 
divided blocks of the image region I, and * denotes the convolution operator. Block Bij is 
considered resampled by factor p/q if the convolution value Mp/q*Bij is sufficiently small. The 
number of resampled blocks is counted using the function h: h(x) = 1 if x ≤ s, and 0 otherwise, 
where s is a given threshold. If the resampling score value rs(I, p/q) is greater than a threshold 
t, we consider the image region I as having been resampled by fraction p/q. The score value rs 
falls between 0 and 100. 
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3. Recovery of Approximate Resampling Rates 
Our previous method can detect only the resampling factors that corresponds to the provided 
zeroing masks. To detect more resampling factors, one must provide more zeroing masks; thus, 
the required detection time is proportional to the number of provided zeroing masks. As a 
result, the detectable resampling factors are limited. In this section, we present an approximate 
detection method that can detect many more resampling factors than the previous method 
using the same set of zeroing masks. 

Assume that y = (y1, y2, y3, …) is a resampled signal of the origin signal x = (x1, x2, x3,…) 
with the resampling factor p/q; thus, y = Ap/qx. Let y[α..β] denotes the sub-signal (yα, yα+1, yα+2, 
…, yβ) of y. Then, by (23), for any nonzero integer k, the convolution value Conv(Mp/q, y, 
1+kp), which is defined in  (24), of a sub-signal y[1+kp..1+(k+1)p] with the zeroing mask Mp/q 
must be zero. 

 

∑ +

= +−=
1

1 1
/

/
1),,( p

j jij
qp

qp ym
M

iyMConv  (24) 

 
Table 1(a) shows an original signal x, and Table 1(b) shows a resampled signal y of x with 

factor 4/3. The convolution value Conv(M4/3, y, 1+4k) of the sub-signals y[1+4k .. 5+4k] (or 
y[1..5], y[5..9], y[9..13],…) with the zeroing mask M4/3 shown in Table 1(c) must be zero. In 
this example, Conv(M4/3, y, 1) =                 = 0, but Conv(M4/3, y, 2) =                    = 5.50 ≠ 0. Table 
1(d) provides more values for more sub-sequences. 
 

Table 1. (a) signal x; (b) signal y; (c) zeroing mask M4/3; (d) convolution values of y with M4/3 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 
20 48 64 40 72 40 64 72 100 96 76 
x12 x13 x14 x15 x16 x17 x18 x19 x20 … 
116 140 120 120 100 116 80 96 100 … 

(a) 
 

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 
20 41 56 58 40 64 56 46 64 70 86 99 96 
y14 y15 y16 y17 y18 y19 y20 y21 y22 y23 y24 y25 y26 
81 96 122 140 125 120 115 100 112 98 84 96 … 

(b) 
 

m1 m2 m3 m4 m5 
0.25 -1 1.5 -1 0.25 

(c) 
 

i 1 2 3 4 5 6 7 
Conv(M4/3,y,i) 0 8.25 16.26 12.43 0 8.37 7.41 

i 8 9 10 11 12 13 14 
Conv(M4/3,y,i) 4.18 0 2.03 4.54 7.29 0 0.72 

i 15 16 17 18 19 20 21 
Conv(M4/3,y,i) 8.13 6.33 0 5.62 10.76 9.44 0 

(d) 
 

 
 

∑ =

5

1j jj ym ∑ = +
5

1 1j jj ym
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Table 1(d) shows that Conv(M4/3, y, i) = 0 for only i = 1+ 4k, i.e., the convolution value of 
zero appears periodically. Therefore, the previously proposed method can detect an image if it 
is resampled by a factor that corresponds to a provided zeroing mask for detection, and 
simultaneously, it can correctly detect the resampling factor. The recovery rate approaches 
99%. In our experiment, we follow our previous work [20] with the considered factors p/q, 
where 1 ≤ q < p ≤ 12, such that q = 1 or p and q are coprime (or relatively prime) positive 
integers. Thus, there are 45 zeroing masks for the 45 provided factors for detection. As 
previously mentioned, this method is limited. It can only detect a provided fixed set of 
resampling factors. To overcome this limitation, we propose an approximate detection 
mechanism to detect many more resampling factors than those whose zeroing masks are 
provided. First, we will describe how to use the 45 zeroing masks to detect a wider range of 
resampling factors. 

For example, the signal z shown in Table 2(a) is a resampled signal of the original signal x 
in Table 1(a) with the resampling factor 13/10, whose resampling rate can be successfully 
detected if the zeroing mask M13/10 is provided. However, the detection will fail because the 
zeroing mask M13/10 is not included in the set of zeroing masks. 
 

Table 2. (a) signal z; (b) convolution values of z with M4/3 
z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 
20 42 57 57 42 67 52 49 65 71 91 98 
z13 z14 z15 z16 z17 z18 z19 z20 z21 z22 z23 … 
91 76 107 129 134 120 120 108 106 110 83 … 

(a) 
 

i 1 2 3 4 5 6 7 
Conv(M4/3,z,i) 0.96 6.57 16.14 15.78 5.38 4.3 6.33 

i 8 9 10 14 11 12 13 
Conv(M4/3,z,i) 6.1 3.11 0.84 0.72 5.74 13.03 5.62 

i 15 16 17 18 19 20 … 
Conv(M4/3,z,i) 4.18 7.05 5.74 3.11 3.94 12.31 … 

(b) 
 

The resampled signals y and z are shown in Table 3 (x0 is a dummy signal). The 
composition coefficients are periodic and symmetric in each period, such as those of y[1..5], 
y[5..9], and z[1..14]. Although y[1..5] and y[5..9] are compositions of different portions of the 
original signal x, they can both be zeroed using the zeroing mask M4/3. It can be further 
observed that the composition coefficients in a prefix and a postfix of a period of z are near 
those in each period of y. For example, the composition coefficients in z[1..5] (a prefix of 
z[1..14]) and those in z[10..14] (a postfix of z[1..14]) are near those in y[1..5]. 

Thus, if we let yi = aixr(i)+ (1-ai)xr(i)+1 and zi =bixs(i)+ (1-bi)xs(i)+1, then ai ≒ bi for i = 1, 2, …, 
5 and ai ≒ bi+9, i = 1, 2, …, 5. The prefix sub-signal z[1..5] has a similar composition relation 
to y[1..5]. In other words, z[1..5] and y[1..5] have notably similar sets of coefficients. Because 
the set of coefficients for z[10..14] is symmetric to the set of coefficients for z[1..5] and the 
coefficients in each set are symmetric, z[10..14] and y[1..5] also have similar sets of 
coefficients. Therefore, the convolution values of z[1..5] and z[10..14] with the zeroing mask 
M4/3 are near zero. In general, the convolution values of the prefix sub-signal z[1+13k..5+13k] 
and the postfix sub-signal z[10+13k..14+13k] of each sub-signal z[1+13k..14+13k] can be 
approximately zeroed using the zeroing mask M4/3. 
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Table 3. (a) relations of the resampled signal y and the original signal x through the resampling factor 
4/3; (b) relations of the resampled signal z and the original signal x through the resampling factor 13/10 

y1 = 0x0+1x1 
y2 = (1/4)x1+(3/4)x2 
y3 = (2/4)x2+(2/4)x3 
y4 = (3/4)x3+(1/4)x4 

y5 = 1x4 + 0x5 
y6 = (1/4)x4+(3/4)x5 
y7 = (2/4)x5+(2/4)x6 
y8 = (3/4)x6+(1/4)x7 

y9 = 1x7+0x8 
y10 = (1/4)x7+(3/4)x8 
y11 = (2/4)x8+(2/4)x9 
y12 = (3/4)x9+(1/4)x10 

y13 = 1x10+0x11 
y14 = (1/4)x10+(3/4)x11 

﹕ 

z1 = 0x0+1x1 
z2 = (3/13)x1+(10/13)x2 
z3 = (6/13)x2+(7/13)x3 
z4 =(9/13)x3+(4/13)x4 

z5 = (12/13)x4+(1/13)x5 
z6 = (2/13)x4+(11/13)x5 
z7 = (5/13)x5+(8/13)x6 
z8 = (8/13)x6+(5/13)x7 

z9 = (11/13)x7+(2/13)x8 
z10 = (1/13)x7+(12/13)x8 
z11 = (4/13)x8+(9/13)x9 
z12 = (7/13)x9+(6/13)x10 

z13 = (10/13)x10+(3/13)x11 
z14 = 1x11 + 0x12 

﹕ 
(a) (b) 

 
According to the above observation, we expect that the resampled signal z can be 

approximately zeroed periodically. For example, the small convolution values Conv(M4/3, z, i) 
would appear for i = 1, 10, 14, 23, …, 1+13k, 10+13k, …, as shown in Table 2(b). This fact 
can be used for the approximate resampling detection. In general, we assume that the signal z 
is the resampled signal of x with a resampling factor p’/q’. When detecting signal z using the 
zeroing mask Mp/q, where p’ > p, the small convolution values Conv(Mp/q, z, i) will appear for i 
= 1, p’ – p, p’, 2p’ – p, ..., kp’, (k+1)p’ – p, …. We define a convolution score cs in (25). Here, 
we set t = 4, so that the convolution score is 1 for a small convolution value and 0 otherwise. 
Table 4 shows the convolution scores of a sequence of samples in the resampled signal z with 
the zeroing mask M4/3. Fig. 1 illustrates an ideal sketch of cs of a signal that is resampled using 
factor p’/q’ and the zeroing mask Mp/q. 

If we calculate the difference of the consecutive indices i’ s where the scores of 1 (or small 
convolution values) appear, we can obtain the sequence p’-p, p, p’-p, p, p’-p, p, … Moreover 
the values p’-p and p can be extracted. Because p and q are known, and p’ can be calculated 
using p’ = (p’-p) + p, q’ can be approximately calculated using q’ = round(p’(q/p)) because of 
the assumption of p’/q’ ≒ p/q. For example, if p/q = 4/3 and p’/q’ = 13/10 (initially, the factor 
p’/q’ is unknown), the scores of 1 will appear in i = 0, 9, 13, 22, 26, 35, 39, …, and the 
differences of two consecutive indices are 9, 4, 9, 4, 9, 4, …. We can obtain p’ = 13 for p = 4 
and p’-p = 9. Then, q’ = round(p’(q/p)) = round(13(3/4)) = round(9.75) = 10. Therefore, we 
have the detected resampling factor p’/q’ = 13/10. 
 



 <

=
else0

|),,( |if1
),,( /

/

tizMConv
izMcs qp

qp

 
(25) 

 
Table 4. convolution values and the corresponding scores. 

i 1 2 3 4 5 6 
Conv(M4/3,z,i) 0.24 4.30 -6.70 -3.35 5.86 7.17 

),,( 3/4 izMcs  
1 0 0 1 0 0 

i 7 8 9 10 … 
Conv(M4/3,z,i) -17.57 21.51 -14.84 -3.82 … 

),,( 3/4 izMcs  
0 0 0 1 … 
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Fig. 1. An ideal sketch of cs(Mp/q, z, i). 

 
The proposed method to detect the approximate factor is as follows. We assume that the 

desired detected image is resampled using some unknown factor f = p’/q’, whose 
corresponding zeroing mask is not included in the provided set and f satisfies 12/11 < f < 12, 
where 12/11 and 12 are the minimum and maximum values, respectively, of the factors that 
correspond to the 45 provided zeroing masks. The detections for horizontal resampling and 
vertical resampling are similar. Here, we only discuss the former. When the zeroing mask Mp/q 
is used to detect an image I, the scores are evaluated, and the positions where 1s occur are 
extracted. The detection method is successful if the resampling factor is near one in the set of 
45 factors; otherwise it tends to fail. In fact, the 45 factors are unevenly distributed on the 
interval [1, 12]. If we plot the factor values on the real line, and if f falls in a sparse region, the 
detection tends to fail. Half of the factors are in the subinterval [1, 2], and only 11 factors fall 
in [4, 12]. For f = 1.82, because it is in a dense region, where the two factors 9/5 and 11/6 are 
notably near it, it can be successfully detected. For f = 6.5, because it is in a sparse region and 
neither of the closest factors (6 and 7) is sufficiently near it, the detection will fail. To address 
this problem, we add two zeroing masks, M19/3 and M20/3, for detection, the factors of which are 
both near 6.5. Similarly, in other sparse regions, we add some more corresponding zeroing 
masks, to raise the detection rate. For each sparse region [j, j+1], j = 6, 7, …, 11, we add two 
factors j + 1/3 and j + 2/3. Thus, 12 zeroing masks are derived and added to the set of zeroing 
masks for detection. As a result, there are 57 (= 45 + 12) provided zeroing masks for detection, 
so that the resampling factors between 12/11 and 12 can be detected. This set is sufficient for 
practical use. 

4. Experimental Results 
In our experiments, 100 natural images were used for testing. Each of these 100 images was 
first resampled using one of 110 different resampling factors, which rangd from 1.1 to 12 with 
a step size of 0.1. As a result, there were 11,000 resampled test images. The exact detection is 
always performed first. If the exact detection fails, the approximate detection is performed. If 
an image is resampled using a factor that corresponds to one of the provided zeroing masks, it 
can be 100% successfully detected in the first stage. Otherwise, it would be successfully 
approximately detected in the second stage if its resampling rate is near one of the factors that 
correspond to the provided zeroing masks. As defined in (26), the error rate of the detected 
factor in this example is 10%. The recovery rates of the factors vs. the tolerance of error rates, 
which ranged from 1.1 to 3.0, are illustrated in Fig. 2. We can observe that a higher error rate 
for tolerance corresponds to a higher recovery rate. 
 

factor correct
factor correct-factor detectedrateerror =  (26) 
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For a resampled image whose resampling factor is not sufficiently near the factor of any 
provided zeroing mask, the approximate detection tends to fail. This problem can be addressed 
by providing more zeroing masks so that the resampling factors of all provided masks are 
distributed over the specific interval with no sparse portions. Because 1 ≤ q < p ≤ 12, the 
minimum and maximum values of the provided p/q are 12/11 and 12, respectively, and there 
are 45 factors in the interval [1, 12]. More than half of the provided factors are in the interval [1, 
3], and the remainder is sparsely distributed in the interval [3, 12]. A factor in [3, 12] is likely 
far from all provided factors and may be more difficult to detect. To address this problem, we 
provide some more zeroing masks for the factors in the interval [3, 12], as follows. In the 
interval [k, k+1], 6 ≤ k ≤ 11, zeroing masks are added for factors k+1/3 and k + 2/3. As a result, 
12 zeroing masks are added, and the total number of zeroing masks for detection is increased 
to 57. 

After adding 12 more zeroing masks to eliminate the sparse regions in the interval [1.1, 12], 
any resampling factor in the interval [1.1, 12] is near at least one of the factors that correspond 
to the provided zeroing masks, so that it can be detected. 

Fig.s 3(a)-(c) and 3(d)-(f) show the recovery rates for the resampling factors in [6, 12] using 
the set of 45 zeroing masks and the increased set of 57 zeroing masks, respectively. The use of 
more zeroing masks indeed improves the recovery rates. As shown in Fig. 3(a), with 45 
zeroing masks, the recovery rates with a tolerance of 0% error rate for the resampling factors 
6.3 and 6.6 are 0% and 1%, respectively. As shown in Fig. 3(d), with 57 zeroing masks, the 
detection rates with a tolerance of 0% error rate for the resampling factors 6.3 and 6.6 are 
increased to 35% and 22%, respectively. 

As shown in Table 5, the recovery rate for the resampling factors is up to 97.74%, with a 
tolerance of error rate of 20%. However, the detection rate of resampling without any 
tolerance is 100%. 

In most cases, the errors are produced by the “round” operation. For example, when 
performing the approximate detection on an image that was resampled using a factor of 2.1 (= 
21/10) with the zeroing mask of factor 2, which is near 2.1, the periodicity of p’ = 21 is found, 
and q’ is evaluated as round(21/2) = round(10.5) = 11 to yield the approximate factor 21/11 
(≒1.9). 
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Fig. 2. Recovery rates vs. tolerance of error rates. 
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Fig.  3. (a)-(c) detection results with 45 zeroing masks (d)-(f) detection results with 57 zeroing masks. 
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Table 5. Recovery rates of resampling factors vs. tolerance of error rates (11100 test images). 
tolerance of error rates 0% ≦5% ≦10% ≦15% ≦20% 

recovery rates of resampling 
factors 46.31% 59.13% 82.58% 92.17% 97.74% 
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Fig. 4. Sketch of recovery rates of resampling factors vs. tolerance of error rates 

 

5. Conclusion and Future Work 
Improving upon our previous work, we have presented a new method to detect image 
resampling and recover the resampling factors, which detects many more resampling factors 
using the same set of zeroing masks. This improved method detects image resampling by 
checking for some periodicity that is generated by convolution with zeroing masks using an 
approximate mechanism. The proposed method detects whether an image has been resampled 
and recovers an approximate corresponding resampling factor. 

Although the method that was proposed by Lien et al. [19] can recover the resampling 
factors, it can only recover the resampling factors whose weighting tables are provided, and it 
must use weighting tables to recover the possible original image and examine the periodicity. 
Furthermore, their work is notably time-consuming, and false positives may occur when the 
set of weighting tables is not sorted in specific orders. 

Although our previous work is much more efficient and effective than the method proposed 
by Popescu and Farid [1], it can only detect the resampling factors that correspond to the 
factors of the provided zeroing masks. For example, 57 factors in the interval [1.1, 12] were 
used in the experiment. Associated with the approximation detection mechanism, the proposed 
method in this paper can detect all resampling factors in the interval [1.1, 12]. Theoretically, 
there is an infinite number, many more than 57, of factors in the interval [1.1, 12]. The 
experimental results have demonstrated that the proposed method is indeed effective and 
efficient. The accuracy rate for resampling detection is 100%. The recovery rates for the 
resampling factors are 46.31%, 59.13 %, 82.58 %, 92.17 %, and 97.74% for tolerance of error 
rates of 0%, 5%, 10%, 15%, and 20% respectively. Many false positives are generated for the 
test images that are too smooth because the resampling score for a smooth region with a 
zeroing mask tends to be high. Thus, images that are too smooth are likely to be zeroed using 
any zeroing mask. The average time required to detect an image is 0.52 seconds. In the future, 
we would like to improve our method to combat other types of modifications, such as rotation, 
Gaussian noise, and gamma correction. 
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