• 제목/요약/키워드: Image Distribution

검색결과 2,842건 처리시간 0.033초

기후변화 시나리오를 고려한 위성영상 기반 미래 탄소흡수량 분포 추정 (Estimation of Carbon Absorption Distribution based on Satellite Image Considering Climate Change Scenarios)

  • 나상일;안호용;류재현;소규호;이경도
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.833-845
    • /
    • 2021
  • 탄소흡수량 산정 및 토지이용 변화에 대한 이해는 기후변화 연구에서 매우 중요하다. 기존의 연구에서는 토지이용 변화에 따른 탄소흡수량 산정에 원격탐사 기술이 사용되고 있으나 대부분 과거의 탄소흡수량 변화에 초점을 맞추고 있다. 따라서 미래 탄소흡수량 변화 예측 연구는 부족한 실정이다. 본 연구에서 CLUE-S 모형을 사용하여 토지이용 변화를 모의하고 기후변화 시나리오를 고려하여 미래 탄소흡수량의 변화를 예측하였다. 그 결과, RCP 4.5 및 8.5 시나리오에서 탄소흡수량은 각각 7.92, 13.02% 감소되는 것으로 예측되었다. 따라서 본 연구에서 제안한 방법은 다른 기후변화 시나리오를 고려한 미래 탄소흡수량 변화에도 적용이 가능할 것으로 기대된다.

드론 열적외선 영상을 이용한 3차원 열공간 모델링 (3D Thermo-Spatial Modeling Using Drone Thermal Infrared Images)

  • 신영하;손경완;임수봉;이동천
    • 한국측량학회지
    • /
    • 제39권4호
    • /
    • pp.223-233
    • /
    • 2021
  • 건축물에서 소비되는 에너지의 체계적이고 지속적인 모니터링과 관리는 건물의 열효율을 산정하여 등급화하기 위해 중요하고, 궁극적으로 기후변화에 대처하고 환경 및 에너지 수급 정책의 효과적 수립을 목표로 하고 있다. 전 세계적으로 건축물은 총 에너지의 36%를 소비하고 있으며, 이산화탄소 배출량은 39%를 점유하고 있다. 본 연구의 목적은 건축물 등급제에 필수적인 건축물에서 방출되는 온도측정을 위해 드론 열적외선(TIR: thermal infrared) 영상을 이용하여 사진측량 기법으로 건물을 모델링하고 3차원 열공간 모델(thermo-spatial model)을 생성하여 분석하는 방안을 제시하는 것이다. 이를 위해 드론에 탑재된 열적외선 센서로부터 촬영한 광학 및 TIR 영상으로 항공삼각측량을 수행하여 모델링의 정확도를 비교 분석하였다. TIR 영상의 공간 및 방사 해상도는 광학영상에 비해 낮으므로 3D 건물 모델링의 객체 형태는 상대적으로 부정확하지만, 공간정보기반의 건축물 열에너지 측정을 위해 효과적으로 사용될 수 있으므로 사진측량 기술의 다양한 분야로의 응용을 제시한 것으로 의의가 있다고 판단된다. 열공간 모델은 건축물에서 방출되는 온도를 기반으로 소비되는 에너지를 정량적으로 산정하여 개별 건물의 에너지 등급을 책정하기 위한 기본 정보로 사용될 것으로 판단된다.

KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증 (Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data)

  • 장재철;박경애;양도철
    • 대한원격탐사학회지
    • /
    • 제34권6_3호
    • /
    • pp.1383-1398
    • /
    • 2018
  • 해상풍은 복잡한 해양 현상을 이해하는 데 가장 기초 요소 중 하나이다. 1990년대 초부터 산란계를 활용하여 전세계 바람장 자료를 생산해왔지만, 낮은 해상도로 인해 해양 연구에 제한적으로 사용되었다. Synthetic Aperture Radar(SAR)는 이러한 한계점을 보완하여 고해상도의 바람장 자료 생산이 가능하다. KOMPSAT-5는 한반도 최초의 X-band SAR 탑재 인공위성으로 고해상도 해상풍 산출이 가능하다. 본 연구는 KOMPSAT-5 후방산란계수 자료를 활용하여 산출한 해상풍의 검증 결과를 최초로 제시하였다. 18장의 KOMPSAT-5 ES 모드 자료를 수집하여 해양 부이와의 일치점 데이터베이스를 생산하였다. 정확한 해상풍 산출을 위해 육지 화소, 스페클 잡음, 선박 화소를 제거하는 전처리 과정을 거쳤고, 해양 부이 실측 자료에 Liu-Katsaros-Businger (LKB) 모델을 통해 10-m 중성 바람으로 변환하여 기준 자료로 활용하였다. XMOD2를 활용하여 산출한 해상풍은 후방산란계수 산출식에 따라 $2.41-2.74m\;s^{-1}$의 평균 제곱근 오차를 보였다. 분석 결과 KOMPSAT-5 후방산란계수 자료를 활용하여 해상풍을 산출하는 경우, 대기 중력파, 파랑, 내부파를 포함한 해양 기상 환경과 레인지 모호성(range ambiguity), 입사각의 이산적 불연속적 분포를 포함한 영상 품질에 의한 잠재적 오차 요인이 존재함을 규명하였다.

능동형 콘텐츠 지원을 위한 OMA DRM 프레임워크의 확장 (Extending the OMA DRM Framework for Supporting an Active Content)

  • 김후종;정은수;임재봉
    • 정보보호학회논문지
    • /
    • 제16권5호
    • /
    • pp.93-106
    • /
    • 2006
  • 무선 인터넷 통신의 빠른 성장으로 차세대 이동 단말들에서 이미지, 음악, 비디오 및 응용들과 같은 무선 디지털 콘텐츠들의 배포가 가능하게 되었다. 불법 복사 방지, 사용 권한 제어, 인증 기능이 없는 상태에서 이동 단말이 빠른 속도로 통신 채널을 확대하기 위한 주요 수단이 되면, 인증되지 않은 이동 단말을 통해 무선 디지털 콘텐츠는 불법적으로 복사, 편집, 배포된다. 본 논문은 일반적인 OMA DRM v2.0의 목적과 기능에 대해서 살펴본다. OMA는 모바일 DRM을 위한 공개 표준을 개발하고 있는 유일한 곳이다. 다음으로 능동형 콘텐츠의 특징에 대해서 소개하고, 능동형 콘텐츠와 수동형 콘텐츠의 차이에 대해서 설명한다. 능동형 콘텐츠를 빠르게 재생하기 위한 OMA 기반 DRM 프레임워크를 제안한다. 본 프레임 워크에는 콘텐츠 부분 암호화를 위한 DCF 확장, 콘텐츠 암호화 키 관리, 능동형 콘텐츠를 위한 렌더링 API가 포함된다. 실험 결과는 제안한 방법을 통해 QoE를 만족할 수 있는 정도로 충분히 빠르게 능동형 콘텐츠를 렌더링 할 수 있음을 보여 준다 본 프레임워크는 이동 단말 환경을 위해 제안된 것이지만, 휴대용 재생기, 셋탑 박스, 개인 컴퓨터에서도 적용할 수 있다.

미백 기능성 화장품 원료의 유효성 평가를 위한 In Vitro 색소화피부모델 개발 (Development of an In Vitro Pigmented Skin Model to Evaluate the Effectiveness of Whitening Functional Cosmetic Ingredients)

  • 김설영;이건희;곽은지;김수지;이수현;임경민
    • 대한화장품학회지
    • /
    • 제47권4호
    • /
    • pp.297-304
    • /
    • 2021
  • 본 연구에서는 미백 기능성 화장품 및 원료의 효능을 평가하는 동물대체시험법을 개발하기 위하여 세포수준과 색소화피부모델(KeraSkin-MTM)에서 기존에 잘 알려진 4종의 미백기능성원료(arbutin, ascorbic acid, kojic acid, niacinamide)의 효능을 평가하였다. 특히 기존 시험법의 보완을 위해 인체피부유래 케라틴세포와 멜라닌세포를 혼합하고 공배양하여 색소화피부모델을 제작하였다. 그 결과 색소화피부모델을 이용하여 미백효능을 평가함으로써 세포수준에서는 확인이 어려웠던 각 피부세포층에 따른 멜라닌 과립과 멜라닌캡(melanin cap)의 분포 등의 지표들을 추가로 확인할 수 있었으며 이미지분석을 통한 정량화로 음성대조군 대비 통계적 유의성을 확인할 수 있었다. 이러한 결과는 KeraSkin-MTM을 이용한 미백효능평가법이 기존에 사용하던 총멜라닌함량와 타이로시나아제 저해 평가를 보완할 수 있는 새로운 평가법으로 사용할 수 있음을 시사한다.

AI 영화영상콘텐츠를 위한 AI 예술창작 사례연구 (AI Art Creation Case Study for AI Film & Video Content)

  • 전병원
    • 문화기술의 융합
    • /
    • 제7권2호
    • /
    • pp.85-95
    • /
    • 2021
  • 현재 우리는 창작도구로서 컴퓨터와 창작자로서 컴퓨터 사이에 서 있다. 또한 포스트 시네마적 상황이라 할 수 있는 새로운 장르의 영화들이 등장하고 있다. 본 논문은 AI 시네마의 출현 가능성을 진단하고자 한다. AI 시네마의 가능성을 확인하고자 영화 창작의 필요조건이라 할 수 있는 스토리, 서사의 창작, 이미지의 창작, 사운드의 창작이 인공지능에 의해 가능한지 사례조사를 통해 살펴보았다. 먼저 AI 페인팅 알고리즘인 Obvious, GAN 및 CAN의 시각이미지 생성을 확인했다. 둘째, AI 사운드, 음악은 이미 인간과 협력하여 유통 단계에 들어섰다. 셋째, AI는 이미 드라마 대본을 완성 할 수 있고, 빅 데이터를 활용한 자동 시나리오 제작 프로그램도 인기를 얻고 있다. 즉, 우리는 필수적인 영화 제작 요구 사항이 AI 알고리즘으로 충족될 수 있음을 확인할 수 있다. 마노 비치의 'AI 장르 컨벤션' 관점에서 웹 다큐멘터리와 데스크톱 다큐멘터리는 포스트 시네마로서 AI 시네마의 대표적인 장르라고 할 수 있다. AI, 웹 다큐멘터리, 데스크톱 다큐멘터리가 존재하고 있는 환경이 동일하기 때문이다. 본 논문은 포스트시네마의 창작자로서 AI에 대한 연구를 통해 4차 산업혁명시대 영화라는 매체가 개척해야 할 새로운 길을 제시하고 있다.

전단파 토모그래피를 활용한 철도 콘크리트 궤도 슬래브 층분리 결함 평가 (Evaluation of Debonding Defects in Railway Concrete Slabs Using Shear Wave Tomography)

  • 이진욱;기성훈;이강석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권3호
    • /
    • pp.11-20
    • /
    • 2022
  • 이 연구의 주요 목적은 고속철도 콘크리트 궤도 슬래브의 콘크리트 슬래브(track concrete layer, TCL)와 도상안정층(hydraulically stabilized based course, HSB) 사이 층분리를 평가하기 위한 비파괴검사법으로 전단파 토모그래피 기술의 활용가능성을 실험적으로 확인하는 것이다. 이를 위하여 다채널 전단파 측정 장치(MIRA)를 활용하여 실물 크기로 제작된 고속철도 콘크리트 궤도 슬래브 실험체 내부의 층분리 결함을 평가하였다. 실물실험체는 Rheda 2000 시스템에 따라 설계 및 시공되었으며, 노반 위에 HSB를 타설하고, 그 위에 TCL이 타설된 2층 슬래브 구조를 갖는다. 실물실험체는 일부구간의 HSB상부에 스티로폼으로 제작된 인공결함(가로 및 세로가 각각 400mm이고 두께가 각각 5mm, 15mm인 압출폴리스티렌폼(XPS)보드 2개)을 삽입하여, TCL과 HSB 사이에 층분리 결함이 생기도록 시공하였다. 시험체의 층분리 구간에서 얻은 콘크리트 단층이미지는 층분리에 따른 균열 및 HSB와 지반사이의 계면에서 반사되는 신호를 효과적으로 보여 주었다. 한편 초음파 토모그래피 이미지에서 TCL 콘크리트의 매입물(철근, 트러스, 인서트 등)에서 반사된 신호와 층분리 결함 신호를 구분하기 위한 노이즈 제거를 위한 이미지 처리방법을 적용하여 층분리 결함을 효과적으로 분리하였다. 토모그래피 이미지에서 추출된 층분리 결함의 크기정보와 공간정보를 통합하여 층분리 지도로 재구성하였으며, 층분리 결함의 위치 및 크기를 시각화하는데 효과적인 것을 확인하였다.

부가 정보를 활용한 비전 트랜스포머 기반의 추천시스템 (A Vision Transformer Based Recommender System Using Side Information)

  • 권유진;최민석;조윤호
    • 지능정보연구
    • /
    • 제28권3호
    • /
    • pp.119-137
    • /
    • 2022
  • 최근 추천 시스템 연구에서는 사용자와 아이템 간 상호 작용을 보다 잘 표현하고자 다양한 딥 러닝 모델을 적용하고 있다. ONCF(Outer product-based Neural Collaborative Filtering)는 사용자와 아이템의 행렬을 외적하고 합성곱 신경망을 거치는 구조로 2차원 상호작용 맵을 제작해 사용자와 아이템 간의 상호 작용을 더욱 잘 포착하고자 한 대표적인 딥러닝 기반 추천시스템이다. 하지만 합성곱 신경망을 이용하는 ONCF는 학습 데이터에 나타나지 않은 분포를 갖는 데이터의 경우 예측성능이 떨어지는 귀납적 편향을 가지는 한계가 있다. 본 연구에서는 먼저 NCF구조에 Transformer에 기반한 ViT(Vision Transformer)를 도입한 방법론을 제안한다. ViT는 NLP분야에서 주로 사용되던 트랜스포머를 이미지 분류에 적용하여 좋은 성과를 거둔 방법으로 귀납적 편향이 합성곱 신경망보다 약해 처음 보는 분포에도 robust한 특징이 있다. 다음으로, ONCF는 사용자와 아이템에 대한 단일 잠재 벡터를 사용하였지만 본 연구에서는 모델이 더욱 다채로운 표현을 학습하고 앙상블 효과도 얻기 위해 잠재 벡터를 여러 개 사용하여 채널을 구성한다. 마지막으로 ONCF와 달리 부가 정보(side information)를 추천에 반영할 수 있는 아키텍처를 제시한다. 단순한 입력 결합 방식을 활용하여 신경망에 부가 정보를 반영하는 기존 연구와 달리 본 연구에서는 독립적인 보조 분류기(auxiliary classifier)를 도입하여 추천 시스템에 부가정보를 보다 효율적으로 반영할 수 있도록 하였다. 결론적으로 본 논문에서는 ViT 의 적용, 임베딩 벡터의 채널화, 부가정보 분류기의 도입을 적용한 새로운 딥러닝 모델을 제안하였으며 실험 결과 ONCF보다 높은 성능을 보였다.

대상객체 맥락 기반 생체정보 분석방법 (Method of Biological Information Analysis Based-on Object Contextual)

  • 김경준;김주연
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.41-43
    • /
    • 2022
  • 최근 코로나-19의 유행에 따른 전염병 예방 및 차단을 위해 비접촉 생체 정보 취득 및 분석 기술이 주목을 받고 있다. 습식 및 부착형 생체정보 취득 방법은 정확하게 생체정보를 측정 할 수 있는 장점이 있지 만 밀 접촉에 따른 전염이 높아지는 위험성을 내포하고 있다. 이러한 문제점을 해결하기 위해 사람의 지문, 얼굴, 홍채, 정맥, 음성, 서명 등의 생체 정보를 자동화된 장치로 추출하는 비접촉 방식은 빅데이터와 AI 기술 적용으로 데이터 처리 속도가 빨라지고 인식 정확도가 높아지면서 다양한 산업에서 활용이 증가하고 있다. 그러나, 비접촉식 생체 데이터 취득 기술의 정확도가 개선되었지만, 비접촉 방법은 측정 대상 객체를 둘러싸고 있는 외부 온도, 습도, 조도 등의 주위 환경에 많은 영향을 받아 측정정보가 왜곡되는 현상이 발생하고 또한 정확도가 떨어지는 단점이 있다. 본 논문에서는 생체정보 분석을 위한 개인화 정보(이미지, 신호 등)의 해석을 위한 맥락기반 생체신호 모델링 기법을 제안 한다. 맥락기반 생체정보 모델링 기법은 성능 개선을 위해 생체정보 측정의 정황 정보와 사용자 정보를 복합적으로 고려하는 모델을 제시한다. 제안 모델은 예측 값 확률을 최대화할 수 있는 맥락기반 신호 해석을 통한 특징 확률분포를 기반으로 신호 정보를 분석한다.

  • PDF

시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발 (Development of real-time defect detection technology for water distribution and sewerage networks)

  • 박동채;최영환
    • 한국수자원학회논문집
    • /
    • 제55권spc1호
    • /
    • pp.1177-1185
    • /
    • 2022
  • 상·하수도 시스템은 사람들에게 안전하고 깨끗한 물을 공급해주는 사회기반시설이며, 특히 상·하수도 관로는 지중에 매설되어 있기 때문에 시스템의 결함검출이 매우 어렵다. 이러한 이유로 상·하수도 관로의 진단은 관로 내부에 카메라 및 드론을 통한 촬영을 하여 사후에 촬영된 영상을 바탕으로 시스템 진단하는 등의 사후 결함검출로 제한되기 때문에, 작업자의 업무 효율 증대와 진단의 신속성을 위해서는 관로의 실시간 탐지기술이 필요하다. 최근 첨단장비 및 인공지능 기법을 활용한 시설물 진단 기술이 개발되고 있지만, 인공지능기반 결함검출 기술은 결함 데이터의 종류 및 형태, 수가 검출 성능에 영향을 주기 때문에 다양한 학습데이터가 필요하다. 따라서, 본 연구에서는 상·하수도 관로의 결함검출 시 탐지 성능 향상을 위해 다양한 결함 시나리오를 3D 프린트를 이용하여 구현하고 이를 수집된 결함 데이터와 함께 학습데이터로 사용한다. 이후 수집된 이미지는 위험도에 따른 분류 및 객체의 라벨링 등의 전처리 작업이 수행되고 실시간 결함탐지를 수행한다. 제안된 기법은 상·하수도시스템 결함검출 시 실시간 피드백을 제공함으로써, 작업자의 진단 누락 가능성을 최소화하며 기존의 상·하수도관 진단업무 처리능력을 향상할 수 있다.