• Title/Summary/Keyword: Illumination robustness

Search Result 62, Processing Time 0.024 seconds

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

Container BIC-code region extraction and recognition method using multiple thresholding (다중 이진화를 이용한 컨테이너 BIC 부호 영역 추출 및 인식 방법)

  • Song, Jae-wook;Jung, Na-ra;Kang, Hyun-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1462-1470
    • /
    • 2015
  • The container BIC-code is a transport protocol for convenience in international shipping and combined transport environment. It is an identification code of a marine transport container which displays a wide variety of information including country's code. Recently, transportation through aircrafts and ships continues to rise. Thus fast and accurate processes are required in the ports to manage transportation. Accordingly, in this paper, we propose a BIC-code region extraction and recognition method using multiple thresholds. In the code recognition, applying a fixed threshold is not reasonable due to a variety of illumination conditions caused by change of weather, lightening, camera position, color of the container and so on. Thus, the proposed method selects the best recognition result at the final stage after applying multiple thresholds to recognition. For each threshold, we performs binarization, labeling, BIC-code pattern decision (horizontal or vertical pattern) by morphological close operation, and character separation from the BIC-code. Then, each characters is recognized by template matching. Finally we measure recognition confidence scores for all the thresholds and choose the best one. Experimental results show that the proposed method yields accurate recognition for the container BIC-code with robustness to illumination change.

Face Identification Using a Near-Infrared Camera in a Nonrestrictive In-Vehicle Environment (적외선 카메라를 이용한 비제약적 환경에서의 얼굴 인증)

  • Ki, Min Song;Choi, Yeong Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.99-108
    • /
    • 2021
  • There are unrestricted conditions on the driver's face inside the vehicle, such as changes in lighting, partial occlusion and various changes in the driver's condition. In this paper, we propose a face identification system in an unrestricted vehicle environment. The proposed method uses a near-infrared (NIR) camera to minimize the changes in facial images that occur according to the illumination changes inside and outside the vehicle. In order to process a face exposed to extreme light, the normal face image is changed to a simulated overexposed image using mean and variance for training. Thus, facial classifiers are simultaneously generated under both normal and extreme illumination conditions. Our method identifies a face by detecting facial landmarks and aggregating the confidence score of each landmark for the final decision. In particular, the performance improvement is the highest in the class where the driver wears glasses or sunglasses, owing to the robustness to partial occlusions by recognizing each landmark. We can recognize the driver by using the scores of remaining visible landmarks. We also propose a novel robust rejection and a new evaluation method, which considers the relations between registered and unregistered drivers. The experimental results on our dataset, PolyU and ORL datasets demonstrate the effectiveness of the proposed method.

Traffic Object Tracking Based on an Adaptive Fusion Framework for Discriminative Attributes (차별적인 영상특징들에 적응 가능한 융합구조에 의한 도로상의 물체추적)

  • Kim Sam-Yong;Oh Se-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.1-9
    • /
    • 2006
  • Because most applications of vision-based object tracking demonstrate satisfactory operations only under very constrained environments that have simplifying assumptions or specific visual attributes, these approaches can't track target objects for the highly variable, unstructured, and dynamic environments like a traffic scene. An adaptive fusion framework is essential that takes advantage of the richness of visual information such as color, appearance shape and so on, especially at cluttered and dynamically changing scenes with partial occlusion[1]. This paper develops a particle filter based adaptive fusion framework and improves the robustness and adaptation of this framework by adding a new distinctive visual attribute, an image feature descriptor using SIFT (Scale Invariant Feature Transform)[2] and adding an automatic teaming scheme of the SIFT feature library according to viewpoint, illumination, and background change. The proposed algorithm is applied to track various traffic objects like vehicles, pedestrians, and bikes in a driver assistance system as an important component of the Intelligent Transportation System.

Efficient Hardware Architecture for Fast Image Similarity Calculation (고속 영상 유사도 분석을 위한 효율적 하드웨어 구조)

  • Kwon, Soon;Lee, Chung-Hee;Lee, Jong-Hun;Moon, Byung-In;Lee, Yong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.6-13
    • /
    • 2011
  • Due to its robustness to illumination change, normalized cross-correlation based similarity measurement is widely used in many machine vision applications. However, its inefficient computation structure is not adequate for real-time embedded vision system. In this paper, we present an efficient hardware architecture based on a normalized cross correlation (NCC) for fast image similarity measure. The proposed architecture simplifies window-sum process of the NCC using the integral-image. Relieving the overhead to constructing integral image, we make it possible to process integral image construction at the same time that pixel sequences are inputted. Also the proposed segmented integral image method can reduce the buffer size for storing integral image data.

Lane Information Fusion Scheme using Multiple Lane Sensors (다중센서 기반 차선정보 시공간 융합기법)

  • Lee, Soomok;Park, Gikwang;Seo, Seung-woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.142-149
    • /
    • 2015
  • Most of the mono-camera based lane detection systems are fragile on poor illumination conditions. In order to compensate limitations of single sensor utilization, lane information fusion system using multiple lane sensors is an alternative to stabilize performance and guarantee high precision. However, conventional fusion schemes, which only concerns object detection, are inappropriate to apply to the lane information fusion. Even few studies considering lane information fusion have dealt with limited aids on back-up sensor or omitted cases of asynchronous multi-rate and coverage. In this paper, we propose a lane information fusion scheme utilizing multiple lane sensors with different coverage and cycle. The precise lane information fusion is achieved by the proposed fusion framework which considers individual ranging capability and processing time of diverse types of lane sensors. In addition, a novel lane estimation model is proposed to synchronize multi-rate sensors precisely by up-sampling spare lane information signals. Through quantitative vehicle-level experiments with around view monitoring system and frontal camera system, we demonstrate the robustness of the proposed lane fusion scheme.

A Lane-Departure Identification Based on Linear Regression and Symmetry of Lane-Related Parameters (차선관련 파라미터의 대칭성과 선형회귀에 기반한 차선이탈 인식)

  • Yi Un-Kun;Lee Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.435-444
    • /
    • 2005
  • This paper presents a lane-departure identification (LDI) algorithm for a traveling vehicle on a structured road. The algorithm makes up for the weak points of the former method based on EDF[1] by introducing a Lane Boundary Pixel Extractor (LBPE), the well known Hough transform, and liner regression. As a filter to extract pixels expected to be on lane boundaries, the LBPE plays an important role in enhancing the robustness of LDI. Utilizing the pixels from the LBPE the Hough transform provides the lane-related parameters composed of orientation and distance, which are used in the LDI. The proposed LDI is based on the fact the lane-related parameters of left and right lane boundaries are symmetrical as for as the optical axis of a camera mounted on a vehicle is coincident with the center of lane; as the axis deviates from the center of lane, the symmetrical property is correspondingly lessened. In addition, the LDI exploits a linear regression of the lane-related parameters of a series of successive images. It plays the key role of determining the trend of a vehicle's traveling direction and minimizing the noise effect. Except for the two lane-related parameters, the proposed algorithm does not use other information such as lane width, a curvature, time to lane crossing, and of feet between the center of a lane and the optical axis of a camera. The system performed successfully under various degrees of illumination and on various road types.

RF Compatibility Design & Verification for the SAR Satellite (SAR 위성의 고주파 호환성 설계 및 검증)

  • Won, Young-Jin;Park, Hong-Won;Moon, Hong-Youl;Woo, Sung-Hyun;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.37-48
    • /
    • 2011
  • Synthetic Aperture Radar(SAR) is a powerful and well established microwave remote sensing technique which enables high resolution measurement of Earth surface independent of weather conditions and sunlight illumination. KARI has been developing the first Korea SAR satellite which is scheduled to be launched in this year. The SAR satellite mainly consists of the bus platform and SAR payload. Most of all, the RF compatible design during the design phase and the verification of the RF compatibility during the testing phase is very important procedure for the in-orbit performance guarantee because the SAR payload radiates high power through the SAR antenna. In this study, the SAR satellite design criteria and verification procedure for the RF compatibility are described. In addition, this paper describes the RF full radiation testing (RF auto-compatibility testing) for the verification of the RF performance robustness, the testing configuration, and the test results.

License Plate Detection with Improved Adaboost Learning based on Newton's Optimization and MCT (뉴턴 최적화를 통해 개선된 아다부스트 훈련과 MCT 특징을 이용한 번호판 검출)

  • Lee, Young-Hyun;Kim, Dae-Hun;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.71-82
    • /
    • 2012
  • In this paper, we propose a license plate detection method with improved Adaboost learning and MCT (Modified Census Transform). The MCT represents the local structure patterns as integer numbered feature values which has robustness to illumination change and memory efficiency. However, since these integer values are discrete, a lookup table is needed to design a weak classifier for Adaboost learning. Some previous research efforts have focused on minimization of exponential criterion for Adaboost optimization. In this paper, a method that uses MCT and improved Adaboost learning based on Newton's optimization to exponential criterion is proposed for license plate detection. Experimental results on license patch images and field images demonstrate that the proposed method yields higher performance of detection rates with low false positives than the conventional method using the original Adaboost learning.

Vanishing Line based Lane Detection for Augmented Reality-aided Driver Induction

  • Yun, Jeong-Rok;Lee, Dong-Kil;Chun, Sung-Kuk;Hong, Sung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • In this paper, we propose the augmented reality(AR) based driving navigation based on robust lane detection method to dynamic environment changes. The proposed technique uses the detected lane position as a marker which is a key element for enhancing driving information. We propose Symmetrical Local Threshold(SLT) algorithm which is able to robustly detect lane to dynamic illumination environment change such as shadows. In addition, by using Morphology operation and Connected Component Analysis(CCA) algorithm, it is possible to minimize noises in the image, and Region Of Interest(ROI) is defined through region division using a straight line passing through several vanishing points We also propose the augmented reality aided visualization method for Interchange(IC) and driving navigation using reference point detection based on the detected lane coordinates inside and outside the ROI. Validation experiments were carried out to assess the accuracy and robustness of the proposed system in vairous environment changes. The average accuracy of the proposed system in daytime, nighttime, rainy day, and cloudy day is 79.3% on 4600 images. The results of the proposed system for AR based IC and driving navigation were also presented. We are hopeful that the proposed research will open a new discussion on AR based driving navigation platforms, and thus, that such efforts will enrich the autonomous vehicle services in the near future.