• Title/Summary/Keyword: Illicium anisatum

Search Result 13, Processing Time 0.019 seconds

Phenolic Compounds from Japanese Anise (Illicium anisatum L.) Leaves

  • Shinn, Seong-whan;Min, Hee-Jeong;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Japanese anise (Illicium anisatum L.) leaves were collected and ground after drying, then immersed with 50 % aqueous acetone for 3 days. After filtration, the extracts were fractionated with n-hexane, chloroform ($CHCl_3$), ethylacetate (EtOAc) and $H_2O$, and then freeze dried after concentration. A portion of EtOAc (3.12 g) and $H_2O$ (6.08 g) soluble fractions were chromatographed on a Sephadex LH-20 column with various aqueous MeOH solution to isolate the compounds. Compound 1 ((+)-catechin) was isolated from EtOAc soluble fraction. Compounds 2 (quercetin), 3 (quercitrin) and 4 (2''-O-rhamnosylvitexin) were isolated from $H_2O$ soluble fraction. For the first time, quercitrin (3) and 2''-O-rhamnosylvitexin (4) of the isolated compounds were obtained from the extracts of japanese anise leaves.

Biological Activities on Phenolic Compounds of Japanese anise (Illicium anisatum L) Extracts

  • Shinn, Seong-Whan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.120-125
    • /
    • 2019
  • In this paper, we have isolated six phenolic compounds, such as (+)-catechin (1), taxifolin (2), taxifolin-3-O-${\beta}$-D-(+)-xylose (3), quercetin (4), quercetin-3-O-${\alpha}$-L(+)-rhamnose (quercitrin) (5), apigenin-8-C-rhamnosyl-(1'''${\rightarrow}$2'')-glucoside (2''-O-rhamnosylvitexin) (6) from the EtOAc(Ethyl Acetate) and $H_2O$ soluble fractions of Japanese anise(Illicium anisatum L) leaves and twigs. Also, we have evaluated antioxidative and antiviral activity for each isolated compound. The antioxidative test was DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity. According to the experimental results, all of the isolated compounds indicated the increased radical scavenging activities as the concentration increases and most of the isolated compounds indicated generally good antioxidative values compare to the controls, ascorbic acid and ${\alpha}$-tocopherol. In the antiviral activities, all of the isolated compounds had no potentials in rhinovirus 1B (HRV 1B). But in enterovirus 71 (EV 71) and Influenza virus A/PR/8 (Influenza PR8), only quercetin (4) indicated the good antiviral activity compare to the control. Based on the above results, we found that the phenolic compounds of Japanese anise may be applied for one of the natural biomass sources that can be used as an antioxidant and an antiviral substance.

Phenolic Compounds from Japanese anise (Illicium anisatum L.) Twigs

  • Min, Hee-Jeong;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.456-462
    • /
    • 2017
  • Japanese anise (Illicium anisatum L.) twigs were collected and ground after drying, then immersed with 50% aqueous acetone for 3 days. After filtration, the extracts were fractionated with n-hexane, chloroform ($CHCl_3$), ethylacetate (EtOAc) and $H_2O$, and then freeze-dried after condensation. A portion of EtOAc soluble fraction (5.7 g) was chromatographed on a Sephadex LH-20 column with various aqueous $MeOH-H_2O$. Compound 2 and compound 3 were isolated from fraction 8 and 5, respectively. Compound 1 and compound 4 were isolated after rechromatography of fraction 7. The isolated compounds were elucidated as (+)-catechin (1), taxifolin (2), taxifolin-3-O-${\beta}$-D-(+)-xylopyranose (3) and quercitrin (4) by spectral and literature data, and by comparison with the authentic samples. Of the isolated compounds, taxifolin (2), taxifolin-3-O-${\beta}$-D-(+)-D-xylopyranose (3) and quercitrin (4) were isolated, for the first time, from the extracts of japanese anise twigs.

Photosynthesis, Chlorophyll Contents and Leaf Characteristics of Illicium anisatum under Different Shading Treatments (비음처리에 따른 붓순나무의 광합성, 엽록소 함량 및 엽 특성)

  • Son, Seog-Gu;Han, Jin-Gyu;Kim, Chan-Soo;Hwang, Suk-In;Jeong, Jin-Heon;Lee, Sung-Gie
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1313-1318
    • /
    • 2007
  • Illicium anisatum was bred under four different light intensity. Those condition were full sunlight(PPFD $1600{\mu} mol\;m^{-2}s^{-1}$), 30% treatment(PPFD $400{\mu} mol\;m^{-2}s^{-1}$), 50% treatment(PPFD $250{\mu} mol\;m^{-2}s^{-1}$) and 70% treatment(PPFD $100{\mu} mol\;m^{-2}s^{-1}$), respectively. Chlorophyll a and b were increased according to decrease of light intensity. Thirty percent and 50% treatment had not significant different in chlorophyll a and b. Thirty percent treatment was shown the best photosynthetic activity through invested photosynthetic rate, intercellular $CO_2$ concentration and water use efficiency. Photosynthetic activity trend of 50% treatment was similar to 30% treatment. Seventy percent treatment was shown the best photosynthetic activity at low light intensity but that was decreased to lower value than 30% and 50% treatment under high intensity. Control, bred full sunlight, was shown the worst photosynthetic activity at measured all light intensity. That result could imply that was caused by photo-inhibition because of long term exposed of shade tolerant plant at high light intensity. Leaf characteristics had not significant different in leaf length, width and area but leaf dry weight had similar trend to photosynthetic activity.

Physiological Differences of Ilex rotunda and Illicium anisatum under Low Light Intensities (다른 광도에서 생육한 먼나무, 붓순나무의 생리적 차이)

  • Son Seog-Gu;Je Sun-Mi;Woo Su-Young;Byun Kwang-Ok;Kang Young-Je;Kwang Byung-Seo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.61-67
    • /
    • 2006
  • We examined seedlings of two species (Ilex rotunda and Illicium anisatum) which have a different level of shade tolerance and raised them under different light regimes (full sunlight and 50% shading). After 12 months, we investigated chlorophyll content (Chl. a, Chl. b and Chl. a+b), photosynthetic systems (photosynthetic rate, light compensation point, dark respiration rate and quantum yield), intercellular $CO_2$ concentration and water use efficiency to show acclimation reaction to different light conditions. Seedlings grown under full sunlight showed lower chlorophyll content than those in the shading regime. There was a significant difference between the full sunlight and shade treatments in I. anisatum (shade tolerance species). I. rotunda (intermediate species) showed high photosynthetic rate and water use efficiency over PPFD $1000\;{\mu}mol\;m^{-2}s^{-1}$ to full sunlight. Also, I. anisatum grown under full sunlight showed lower photosynthetic rate and water use efficiency over a range of all PPFD. This result showed that I. rotunda has a more flexible reaction system than that of I. anisatum.

Essential Oil Analysis of Illicium anistum L. Extracts

  • Min, Hee-Jeong;Kim, Chan-Soo;Hyun, Hwa-Ja;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.682-688
    • /
    • 2017
  • Fresh japanese anise (Illicium anisatum L.) tree leaves were collected and ground after drying. The essential oils of the leaves were analyzed by gas chromatography-mass spectrometry (GC-MS) using headspace (HS) and solid phase-microextra (SPME) methods. Volatile components of the leaves were identified 21 and 65 components in HS and SPME, respectively. The main components of the essential oils obtained by HS method were eucalyptol (36.7%), (+)-sabinene (15.61%), ${\delta}$-3-carene (6.87%), ${\alpha}$-pinene (6.07%), ${\gamma}$-terpinen (5.72%), ${\alpha}$-limonene (5.26%), ${\beta}$-myrcene (4.13%), ${\alpha}$-terpinene (4.04%) and ${\beta}$-pinene (3.73%). The other components were less than 3.5%. SPME method also showed that eucalyptol (17.88%) was main. The other were 5-allyl-1-methoxy-2 (13.29%), caryophyllene (6.09%), (+)-sabinene (5.60%), ${\alpha}$-ocimene (4.89%) and ${\beta}$-myrcene (3.73%), and the rest were less amounts than 3.5%. This work indicated that many more volatile components were isolated, comparing to the previous literature data and that SPME method was much more effective than HS method in the analysis of the volatile components.

Methyl salicylate and trans-anethole affect the pheromonal activity of homofarnesal, the female sex pheromone of azuki bean beetle

  • CHILUWAL, Kashinath;KIM, Junheon;BAE, Soon Do;ROH, Gwang Hyun;PARK, Chung Gyoo
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.354-361
    • /
    • 2018
  • Plant essential oils (EOs) exhibit an array of biological activities against insect pests. However, their negative influences on the pheromonal activity of azuki bean beetle (ABB), Callosobruchus chinensis L. have not received research attentions. ABB is a field-to-storage pest of legumes, and its female produces the sex pheromone known as homofarnesal with two isomeric components: 2E- and 2Z-homofarnesal, (2E,6E)-7-ethyl-3,11-dimethyl-2,6,10-dodecatrienals and (2Z,6E)-7-ethyl-3,11-dimethyl-2,6,10-dodecatrienals. We evaluated the effects of three EOs and their two major components on the attractiveness of male ABBs to synthetic homofarnesal (2E-:2Z-homofarnesal = 6:4) using Y-tube olfactometry in laboratory and rocket traps in the semi-open polyhouse. Y-tube olfactometry showed the significant negative effect of EOs of Illicium verum, Croton anisatum at 10 and 100 ng, and Gaultheria fragrantissima at 100 ng against homofarnesal (100 ng) in attracting male ABBs. Similarly trans-anethole (at 10 and 100 ng) and methyl salicylate (at 100 ng) also ascertained significant negative effect against homofarnesal (100 ng) in Y-tube olfactometry. When 10 mg of each of trans-anethole and methyl salicylate was released at the downstream of 30 mg homofarnesal lure in rocket traps, highly significant effect was achieved against attractiveness of homofarnesal to ABB males. This study ascertained significant level of negative effect of the tested EOs and their major components to homofarnesal, tracing out a new opportunity of integrating them in ABB management programs both in field and storage.

Biolagical Activity on Extracts of Japanese Anise(Illicium Anisatum L.) Leaves and Twigs (붓순나무 잎과 가지의 추출물에 대한 생리활성 평가)

  • Shinn, Seong-Whan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.311-316
    • /
    • 2019
  • Japanese anise (Illicium anisatum L.) leaves and twigs were extracted with 50 % aqueous acetone three times. After filtration, the extracts were fractionated with n-hexane, chloroform, ethyl acetate and $H_2O$, and then freeze dried after condensation. Then antioxidation and antiviral activity were evaluated on each fractions. In the antioxidative activities, the results indicated high activity in the EtOAc soluble fraction of the leaves and the EtOAc and $H_2O$ soluble fractions of the twigs. It showed much higher antioxidative value compare to the controls, BHT and ${\alpha}$-tocopherol. In the antiviral activities, the all fractions were negative effects in HRV 1B and EV 71, but good in Influenza PR8. The activities of the crude extracts of the leaves and twigs showed more than 80% activity at the concentration of $10{\mu}g/mL$ and $50{\mu}g/mL$, respectively, and the activities of the EtOAc and $H_2O$ soluble fractions were close to 80%. Based on the above results, the extracts of Japanese anise may be applied for one of the natural biomass sources that can be used as an antioxidant and an antiviral substance.

Cytotoxic Evaluation of Plant Essential Oils in Human Skin and Lung Cells

  • Ahn, Changhwan;Park, Mi-Jin;Kim, Jae-Woo;Yang, Jiyoon;Lee, Sung-Suk;Jeung, Eui-Bae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.166-177
    • /
    • 2018
  • Plant essential oils are defined as fragrant volatile oils extracted from leaves, stems, fruits, flowers, and roots of a plant. Such oils are composed of multiple components and multiple functions. By accumulation of inductive information, various plant essential oils have been studied for using in therapeutic medicine for various diseases. Despite of the apparent advantages of essential oils as a source of therapeutic medicines, plant essential oils have many limitations, including cytotoxic side effects. Therefore, it is necessary to evaluate the toxicity and the mechanisms of cytotoxicity of such oils. In this study, we evaluated the cytotoxicity to human-derived cell lines of 10 plant essential oils provided by National Institute of Forest Science (i.e., Larix kaempferi; Abies holophylla; Zanthoxylum ailanthoides; Pinus parviflora; Tsuga sieboldti; Chamaecyparis pisifera; Cryptomeria japonica; Pinus densiflora; Illicium anisatum; Pinus thunbergii). Cytotoxicity evaluations were accomplished by using CCK-assays and PCR-based cytotoxicity-related marker gene analyses with A549 cell line, and the Detroit551 cell line which are lung and skin cell line. The genes were analyzed included caspase-3 has a role in cell apoptosis, and the other cyclinA, cyclinB, cyclinD, and cyclinE regulated cell cycling for the cell proliferation. By examining the five cytotoxicity-related marker genes by performing real-time PCR and examined the cytostatic gene regulation associated with the various essential oils. The results of this study showed that the degree of cytotoxicity and the cytostatic gene regulation which could give precious information for using the plant essential oil for the clinical usages.