• Title/Summary/Keyword: Iir Filter

Search Result 184, Processing Time 0.024 seconds

Systolic Array Implementaion for 2-D IIR Digital Filter and Design of PE Cell (2-D IIR 디지탈필터의 시스토릭 어레이 실현 및 PE셀 설계)

  • 박노경;문대철;차균현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.1E
    • /
    • pp.39-47
    • /
    • 1993
  • 2-Dimension IIR 디지털 필터를 시스토릭 어레이 구조로 실현하는 방법을 보였다. 시스토릭 어레이는 1-D IIR 디지털 필터로 부분 실현한 후 종속연결하여 구현하였다. 부분 실현한 시스토릭 어레이의 종속 연결은 신호 지연에 사용되는 요소를 감소 시킨다. 여기서 1-D 시스토릭 어레이는 local communication 접근에 의해 DG를 설계한후 SFG로의 사상을 통해 유도하였다. 유도된 구조는 매우 간단하며, 입력 샘플이 공급되어지면 매 샘플링 기간마다 새로운 출력을 얻는 매우 높은 데이터 처리율을 갖는다. 2-Dimension IIR 디지털 필터를 시스토릭 어레이로 실현함으로써 규칙적이고, modularity, local interconnection, 높은 농기형 다중처리의 특징을 갖기 때문에 VLSI 실현에 매우 적합하다. 또한 PE셀의 승산기 설계에서는 modified Booth's 알고리즘과 Ling's 알고리즘에 기초를 두고 고도의 병렬처리를 행할수 있도록 설계하였다.

  • PDF

An Extended Finite Impulse Response Filter for Discrete-time Nonlinear Systems (이산 비선형 시스템에 대한 확장 유한 임펄스 응답 필터)

  • Han, Sekyung;Kwon, Bo-Kyu;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2015
  • In this paper, a finite impulse response (FIR) filter is proposed for discrete-time nonlinear systems. The proposed filter is designed by combining the estimate of the perturbation state and nominal state. The perturbation state is estimated by adapting the optimal time-varying FIR filter for the linearized perturbation model and the nominal state is directly obtained from the nonlinear nominal trajectory model. Since the FIR structured estimators use the finite horizon information on the most recent time interval, the proposed extended FIR filter satisfies the bounded input/bounded output (BIBO) stability, which can't be obtained from infinite impulse response (IIR) estimators. Thus, it can be expected that the proposed extended FIR filter is more robust than IIR structured estimators such as an extended Kalman filter for the round-of errors and the uncertainties from unknown initial states and uncertain system model parameters. The simulation results show that the proposed filter has better performance than the extended Kalman filter (EKF) in both robustness and fast convergency.

An Image Compression Algorithm Using the WDCT (Warped Discrete Cosine Transform) (WDCT(Warped Discrete Cosine Transform)를 이용한 영상 압축 알고리듬)

    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2407-2414
    • /
    • 1999
  • This paper introduces the concept of warped discrete cosine transform (WDCT) and an image compression algorithm based on the WDCT. The proposed WDCT is a cascade connection of a conventional DCT and all-pass filters whose parameters can be adjusted to provide frequency warping. In the proposed image compression scheme, the frequency response of the all-pass filter is controlled by a set of parameters with each parameter for a specified frequency range. For each image block, the best parameter is chosen from the set and is sent to the decoder as a side information along with the result of corresponding WDCT computation. For actual implementation, the combination of the all-pass IIR filters and the DCT can be viewed as a cascade of a warping matrix and the DCT matrix, or as a filter bank which is obtained by warping the frequency response of the DCT filter bank. Hence, the WDCT can be implemented by a single matrix computation like the DCT. The WDCT based compression, outperforms the DCT based compression, for high bit rate applications and for images with high frequency components.

  • PDF

Hyperstable Adaptive Recursive Filter with an Adaptive Compensator (適應 補償器를 채용한 超安定性 適應 循環 필터)

  • Yoon, Byung-Woo;Shin, Yoon-Ki
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.145-155
    • /
    • 1990
  • In this paper, an adaptive Infinite Impulse Response (IIR) filter algorithm using output error method, which prevents poles of a system transfer function from being out of unit circle, is proposed, and it is proved that the proposed algorithm always satisfies hyperstability. The proposed algorithm is applied to an Adaptive Noise Canceller (ANC), and compared with a Least Square (LS) method adaptive IIR filter algorithm and an adaptive Finite Inpulse Response (FIR) filter algorithm. As a result, the validity of the proposed algorithm is proved.

  • PDF

An Adaptive Line Enhancer Using Lattice Notch Filters (격자형 노치 필터를 이용한 정현파 검출기)

  • 조남익;최종호;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.719-726
    • /
    • 1987
  • In this paper, an adaptive IIR (infinite impulse response) notch filter of lattice type is constructed and its adaptation algorithm is proposed for the detection and retrieval of a sine wave signal embedded in noise. A modified method which adapts only one coefficient of the filter is also suggested. All these methods adapt the coefficients while keepting the poles of the filter inside the unit circle on z-plane, and thus they satisfy the condition on the stability of the IIR filter after it has converged. To investigate the convergence characteristics of these methods such as convergence speed and output S/N ratio, intensive computer simulation has been performed by varying the frequency of the sine wave and the input S/N ratio. And the results of the simulation have been compared to those of Rao and Kung's which shows relatively fast convergence speed. The methods proposed here, especially the second one. shows faster convergence speed and higher output S/N ratio than the Rao and Kung's.

  • PDF

A Study on the Performance of the Wave Digital Filters (Wave Digital Filters의 성능에 관한 연구)

  • 이용학;유수현;김재공
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.6
    • /
    • pp.526-534
    • /
    • 1990
  • In the implementation of digital filters, the coefficient errors are occurred when filter coefficients are quantized by finite wordlength. They change the frequency responsed and output characteristics of the filters and therefore they become a main reason which could stimulate coefficient sensitivity especially in recursive filters. In this paper, we study the characteristics of coefficient sensitivity for WDF that is less effective to the coefficient errors. The simulation based on the method of fixed-point quantization demonstrates that the frequency responses of WDF have better preformance than those of conventional cascade IIR filter when variations of finite wordlength is considered.

  • PDF

A Study on 2-D FIR Filter Using the Bernstein Polynomial (Bernstein 다항식을 이용한 2-D FIR 필터에 관한 연구)

  • Seo, Hyun-Soo;Kang, Kyung-Duck;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.443-446
    • /
    • 2005
  • As modern society needs to process of acquisition, storage and transmission of much information, the importance of signal processing is increasing and various digital filters are used in the two-dimensional signal such as image. And kinds of these digital filters are IIR(infinite impulse response) filter and FIR(finite impulse response) filter. And FIR filter which has the phase linearity, the easiness of creation and stability is applied to many fields. In design of this FIR filter, flatness property is a important factor in pass-band and stop-band. In this paper, we designed a 2-D Circular FIR filter using the Bernstein polynomial, it is presented flatness property in pass-band and stop-band. And we simulated the designed filter with noisy test image and compared the results with existing methods.

  • PDF

Comparison of Digital Filters with Wavelet Multiresolution Filter for Electrogastrogram (위전도 신호처리를 위한 웨이브렌 필터와 디지털 필터의 비교)

  • 유창용;남기창;김수찬;김덕원
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2002
  • Electrogastrography(EGG) is a noninvasive method for measuring gastric electrical activity on the abdomen resulting from gastric muscle. EGG signals have a very low frequency range (0.0083 ~0.15 Hz) and extremely low amplitude(10~100 uV). Consequently, EGG signal is easily influenced by other noises. Both finite impulse response(FIR) and infinite impulse response (IIR) filters need high orders or have phase distortions for passing very narrow bandwidth of the EGG signal. In this study, we decomposed EGG signals using a wavelet multiresolution method with Daubechies mother wavelet. The EGG signals were decomposed to seven levels. We reconstructed signal by summing the decomposed signals from level four to seven. To evaluate the performance of the wavelet multiresolution filter(WMF) with simulated EGG signal using two kinds of FIR and four kinds of IIR filters., we used two indices; signal to noise ratio(SNR) and reconstruction squared error(RSE). The SNR of WMF had 9.5, 6.9, and 4.7 dB bigger than that of the other filters at different noise levels, respectively. Also, The RSE of WMF had $1.22{\times}10^6, 1.16{\times}10^6, 1.02{\times}10^6$ smaller than that of the other filters at different noise levels, respectively. The WMF performed better in the SNR and RSE than two kinds of FIR and four kinds of IIR filters.

Correction of Accelerogram in Frequency Domain (주파수영역에서의 가속도 기록 보정)

  • Park, Chang Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.71-79
    • /
    • 1992
  • In general, the accelerogram of earthquake ground motion or the accelerogram obtained from dynamic tests contain various errors. In these errors of the accelerograms, there are instrumental errors(magnitude and phase distortion) due to the response characteristics of accelerometer and the digitizing error concentrated in low and high frequency components and random errors. Then, these errors may be detrimental to the results of data processing and dynamic analysis. An efficient method which can correct the errors of the accelerogram is proposed in this study. The correction of errors can be accomplished through four steps as followes ; 1) using an interpolation method a data form appropriate to the error correction is prepared, 2) low and high frequency errors of the accelerogram are removed by band-pass filter between prescribed frequency limits, 3) instrumental errors are corrected using dynamic equilibrium equation of the accelerometer, 4) velocity and displacement are obtained by integrating corrected accelerogram. Presently, infinite impulse response(IIR) filter and finite impulse response (FIR) filter are generally used as band-pass filter. In the proposed error correction procedure, the deficiencies of FIR filter and IIR filter are reduced and, using the properties of the differentiation and the integration of Fourier transform, the accuracy of instrument correction and integration is improved.

  • PDF

Adaptive Double Notch Filter for Interference Suppression in the GPS Receiver

  • Han, Eu-Geun;Lee, Geon-Woo;Park, Chan-Sik;Shin, Dong-Ho;Lee, Sung-Soo;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1222-1227
    • /
    • 2005
  • In this paper, an efficient scheme of the adaptive notch filter is presented for rejecting the narrow bandwidth interferences(NBI) in GPS receiver. Designed is the lattice IIR double notch filter for more efficient suppression of the NBI with less computational complexity. The algorithm is of recursive prediction error form and uses a special constrained model of IIR with a minimal number of parameters. This paper chooses seven different jamming scenarios including one without jamming for evaluating the proposed filter algorithm. The simulation results to the jamming scenarios show that the proposed algorithm adjusts the double notch filter effectively for the given JSR, and provides better SNR than the conventional algorithms. Finally, it is shown that the advantages of the proposed filter algorithm can range as high as JSR 79dB in time domain processing. Also, the ADNF(adaptive double notch filter) guarantees that more than SNR 10dB of GPS receiver can be always maintained. In conclusion, there is enough evidence to believe that the proposed algorithm will perform quite well for removing interference signals.

  • PDF