• Title/Summary/Keyword: Ignition time

Search Result 630, Processing Time 0.022 seconds

Effect of Compression Ratio on the Combustion Characteristics of a Thermodynamics-Based Homogeneous Charge Compression Ignition Engine

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.61-66
    • /
    • 2015
  • Homogeneous charge compression ignition (HCCI) engine combines the combustion characteristics of a compression ignition engine and a spark ignition engine. HCCI engines take advantage of the high compression ratio and heat release rate and thus exhibit high efficiency found in compression ignition engines. In modern research, simulation has be come a powerful tool as it saves time and also economical when compared to experimental study. Engine simulation has been developed to predict the performance of a homogeneous charge compression ignition engine. The effects of compression ratio, cylinder pressure, rate of pressure rise, flame temperature, rate of heat release, and mass fraction burned were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion characteristics model for a homogeneous charge compression ignition engine running with isooctane as a fuel and effect of compression ratio.

Effects of Fuel Composition and Pressure on Autoignition Delay of Biomass Syngas (혼합비율 및 압력 변화가 바이오매스 합성가스의 점화지연 시간에 미치는 영향)

  • Shim, Tae Young;Kang, Ki Joong;Lu, Xingcai;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.945-952
    • /
    • 2015
  • The autoignition characteristics of biosyngas were investigated both numerically and experimentally. The effects of the temperature, gas composition, and pressure on the autoignition characteristics were evaluated. A shock tube was employed to measure the ignition delay times of the biosyngas. The numerical study on the ignition delay time was performed using the CHEMKIN-PRO software to validate the experimental results and predict the chemical species in the combustion process. The results revealed that the ignition delay time increased with an increase in the hydrogen fraction in the mixture. Under most temperature conditions, the ignition delay time decreased with a pressure increase. However, the ignition delay time increased with an increase in pressure under relatively low temperature conditions.

An Experimental Study on the Evaporation and Ignition of CWS Droplets (CWS액적의 증발 및 점화에 관한 실험적 연구)

  • 안국영;백승욱;김관태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1246-1252
    • /
    • 1993
  • Coal-Water slurry (CWS) is a new potential form of fuel for use in power plants and industrial furnaces. The evaporation and ignition characteristics of CWS have been studied in the post-flame region generated by a flat flame burner. Individual droplets with initial diameters of 1-3mm were supported around the thermocouples and raidly exposed to a hot gas stream. The gas temperature ranged between $950^{\circ}C$ and 1600.deg. C at atmospheric pressure. The effect of droplet size, gas temperature and radiative heat transfer by screen were studied experimentally. The ignition criterion was either a rapid temperature rise in time-temperatuire curves or onset of visible flame in experiment. Incresing the gas temperature or decreasing the droplet size reduced the time required for evaporation and ignition.

The investigation on the Ignition Delay of n-heptane/n-butanol Blend Fuel using a Rapid Compression Machine at Low Temperature Combustion Regime (저온연소조건에서 급속압축기를 이용한 n-heptane/n-butanol 혼합연료의 착화지연에 관한 연구)

  • Song, Jaehyeok;Kang, Kijoong;Yang, Zheng;Lu, Xingcai;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.25-28
    • /
    • 2013
  • This study presents both experimental and numerical investigation of ignition characteristics of n-heptane and n-butanol mixture. The $O_2$ concentration was fixed to 9-10% to make high exhaust gas recirculation(EGR) rate condition. Experiments were performed using a rapid compression machine. In addition, a numerical study of the ignition delay time was performed using CHEMKIN codes to validate experimental results and predict chemical species after combustion process. The results showed that the ignition delay time increased with increasing n-butanol ratio and the reactivity decreased by low $O_2$ concentration.

  • PDF

Assessment of the Risks of Fire and Explosion through the Spontaneous Ignition Temperature and Activation Energy of Sesame Seed Oil Cakes (참깻묵의 자연발화온도와 활성화 에너지를 통한 화재 및 폭발의 위험성 평가)

  • Byun, Sung-Ho;Choi, Yu-Jung;Yoo, Doo-Yeol;Kim, Kyoung-Su;Oh, Jae-Geun;Moon, Byung-Seon;Choi, Jae-Wook
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.225-231
    • /
    • 2021
  • Sesame seed oil cakes are classified as the animal or plant origin among the flammable liquids, and the fire occurs due to the spontaneous ignition through the accumulation of heat during the storage of residues after the extraction of sesame oil. In order to elucidate the cause of the spontaneous ignition of sesame seed oil cakes, the thickness (3 cm, 5 cm, 7 cm and 14 cm) of the sample container was varied, and the spontaneous ignition temperature was measured depending on the storage volume. Thus, the spontaneous ignition temperature was measured to be 180 ℃ at the thickness of 3 cm, 160 ℃ at 5 cm, 145 ℃ at 7 cm and 130 ℃ at 14 cm. As the thickness of the sample container increased, the critical ignition temperature decreased, and the induction time to spontaneous ignition and the time to reach the maximum temperature became longer. Furthermore, the apparent activation energy by the critical ignition temperature, which is the average temperature of ignition and non-ignition, was 97.10 [kJ/mol]. With these data, ignition characteristics of sesame seed oil cakes were determined.

Ignition of Solid Propellants at Subatmospheric Pressures (대기압 이하에서 고체 추진제의 점화 특성 향상 연구)

  • Kim In-Chul;Ryoo Baek-Neung;Jung Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.383-386
    • /
    • 2006
  • Several HTPB/AP and HTPB/AP/HMX propellants were investigated experimentally for ignition characteristics in subatmospheric pressure. The threshold ignition pressure was 4psia for HTPB/AP composite propellant. The partial replacement of AP in HTPB/AP composite propellant by $5\sim15%$ of HMX, HNIW showed improvements in the threshold pressure was below 0.4psia. This appears to be due to the exothermic dissociation characteristics of HMX and HNIW at lower temperature $(\sim220^{\circ}C)$ than that of AP. The ignition substance B/KNO3 was coated thinly on the propellant surface for better ignition effect. As a result, ignition delay time of 15% was improved. NC is applied to $B/KNO_3$ ignition substance as a secondary binder and $NC-B/KNO-3$ suspension solution is coated to the propellant surface.

  • PDF

Ignition of Solid Propellants at Subatmospheric Pressures (대기압 이하에서 고체 추진제의 점화 특성 향상 연구)

  • Kim, In-Cul;Ryoo, Baek-Neung;Jung, Jung-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2006
  • Several propellants were investigated experimentally for ignition characteristics in subatmospheric pressure. The threshold ignition pressure was 4 psia for HTPB/AP composite propellant. The partial replacement of AP in HTPB/AP propellant by $5{\sim}l5%$ of HMX, HNIW showed that the improvements in ignition delay was over 50% and the threshold pressure was below 0.4 psia. This appears to be due to the characteristics of HMX and HNIW exothermic dissociated at the temperature(${\sim}220^{\circ}C$) love. than that of AP. The ignition substance $B/KNO_3$ was coated thinly on the propellant surface for better ignition performance. As a result, ignition delay time of 15% was improved. NC is applied to $B/KNO_3$ ignition substance as a secondary binder and $NC-B/KNO_3$ suspension solution is coated to the propellant surface.

IGNITION OF REACTIVE SOLIDS WITH ROUGH SURFACE BY CONSTANT HEAT FLUX

  • Chae, J.O.;Mokhin, G.N.;Moon, J.I.;Shmelev, V.M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.11-30
    • /
    • 1995
  • The ignition characteristics of a reactive solid with rough surface by constant heat flux were studied. The geometry of surface was represented by a set of identical protrusions having a shape of wedge based on the block of reactive solid. Several regimes of ignition were found, depending on the ratio of the protrusion length and the depth of the heated layer, formed in course of ignition process: 1) when the substance is ignited as the massive block, and the effect of roughness is not pronounced; 2) when ignited are the individual protrusions; and 3) in the intermediate region between the first two. Critical ignition conditions: ignition time and ignition criterion, are determined for the three regimes. The results are compared with the results for the one-dimensional ignition of the semi-infinite body. It is shown, that the effect of geometry on ignition results in the considerable reduction of ignition delay, and the amount of energy required for the successful ignition is less compared to the one- dimensional case.

  • PDF

Study on the Ageing of Glow Starter for Fluorescent Lamp (형광등용 점등관의 에이징에 관한 연구)

  • 지철근
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.23-27
    • /
    • 1973
  • An initial starting voltage, ignition time, glow current and blink of the flow starter are changed rapidly in initial using. therefore an ageing is required to stabilize the initial characteristics. According to the experiments, it is proved that the ageing time for the starting voltage and glow current takes 3 minutes and 5 minutes for ignition time and blink.

  • PDF

Comparison of Ignition Delay Time of Petroleum-based and Bio Aviation Fuel (석유계 및 바이오 항공유의 점화지연시간 비교)

  • Kang, Saetbyeol;Han, Jeongsik;Jeong, Byunghun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.118-125
    • /
    • 2018
  • This study aimed to obtain data for a comparative analysis of the properties of bio aviation fuel to be developed in the future by measuring and comparing the ignition delay times of various presently used aviation fuels. In the case of petroleum-based aviation fuel, the ignition delay time of exo-THDCP was 4.92 ms, which was 3.42 times longer than 1.44 ms of Jet A-1 at $590^{\circ}C$ / 55 bar. In the case of foreign bio aviation fuel, the ignition delay time of 11POSF7629 was the longest (1.16 ms), while the ignition delay time of 10POSF6308 (1.06 ms), 12POSF7720 (1.07 ms), and 07POSF5172 (1.05 ms) were similar.