• Title/Summary/Keyword: Ignition limit

검색결과 174건 처리시간 0.023초

3-헥사논의 화재 및 폭발 특성치의 측정 및 예측 (Measurement and Prediction of Fire and Explosion Properties of 3-Hexanone)

  • 하동명
    • 한국가스학회지
    • /
    • 제17권6호
    • /
    • pp.33-38
    • /
    • 2013
  • 3-헥사논의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였고, 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, 밀페식 장치에 의한 3-헥사논(에틸프로필케톤)의 하부인화점은 $18^{\circ}C$로 측정되었으며, 개방식에서는 $27^{\circ}C{\sim}32^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 3-헥사논의 최소자연발화온도는 $425^{\circ}C$로 측정되었다. 측정된 인화점에 의한 폭발하한계는 1.21 Vol%로 계산되었다.

A Study on the Rapid Bulk Combustion of Premixture Using the Radical Seeding

  • Lee, Myung-Jun;Kim, Jong-Youl;Park, Jong-Sang;Yeom, Jeong-Kuk;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1623-1629
    • /
    • 2004
  • The objective of this study is the rapid bulk combustion of mixture in a constant volume chamber with a tiny sub-chamber. Some narrow passage holes were arranged to induce simultaneous multi-point ignition in the main chamber by jet of burned and unburned gases including radicals from the sub-chamber, and the equivalence ratios of pre-mixture in the main chamber and the sub-chamber were the same. The principal factors of the Radical Induced Auto-Ignition (RIAI) method are the diameter of the passage holes and the volume of sub-chamber. The relationship between the sub-chamber and diameter of passage hole was represented by the ratios of sub-chamber volume to passage hole volume. The ratios are non-dimensional coefficients for sub-chamber characteristics. As a result, the RIAI method reduced the combustion period, which expanded the lean limit in comparison with SI method.

노말테트라데칸의 연소특성치 측정에 의한 위험성 평가 (The Evaluation of Hazard by Measurement of Combustible Characteristics of n-Tetradecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.70-76
    • /
    • 2012
  • For the safe handling of n-tetradecane, the lower flash points and the upper flash point, fire point, AITs (auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-tetradecane were calculated. The lower flash points of n-tetradecane by using closed-cup tester were measured $104^{\circ}C$ and $112^{\circ}C$. The lower flash points and fire point of n-tetradecane by using open cup tester were measured $113^{\circ}C$ and $115^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-tetradecane. The experimental AIT of n-tridecane was $207^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $104^{\circ}C$ and upper flash point $140^{\circ}C$ for n-tetradecane were 0.63 Vol.% and 3.18 Vol%.

노말펜타데칸의 화재 및 폭발 특성치의 측정 (The Measurement of Fire and Explosion Properties of n-Pentadecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.53-57
    • /
    • 2013
  • For the safe handling of n-pentadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-pentadecane were calculated. The lower flash points of n-pentadecane by using closed-cup tester were measured $118^{\circ}C$ and $122^{\circ}C$. The lower flash points and fire point of n-pentadecane by using open cup tester were measured $126^{\circ}C$ and $127^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-pentadecane. The experimental AIT of n-pentadecane was $195^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $118^{\circ}C$ and upper flash point $174^{\circ}C$ for n-pentadecane were 0.54 Vol.% and 6.40 Vol.%.

아니솔의 연소특성치의 측정에 의한 MSDS의 적정성 (Appropriateness of MSDS by Means of the Measurement of Combustible Properties of Anisole)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제29권2호
    • /
    • pp.20-24
    • /
    • 2015
  • 아니솔의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였고, 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, 밀폐식 장치에 의한 아니솔의 하부인화점은 $39^{\circ}C$$42^{\circ}C$로 측정되었으며, 개방식에서는 $50^{\circ}C$$54^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 아니솔의 최소자연발화온도는 $390^{\circ}C$로 측정되었다. 측정된 하부인화점에 의한 폭발하한계는 1.07 Vol%로 계산되었다.

노말헥사데칸의 화재 및 폭발 특성치의 측정 (The Measurement of Fire and Explosion Properties of n-Hexadecane)

  • 하동명
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.39-45
    • /
    • 2014
  • For the safe handling of n-hexadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-hexadecane were calculated. The lower flash points of n-hexadecane by using the Setaflash and the Pensky-Martens closed testers were measured $128^{\circ}C$ and $126^{\circ}C$, respectively. The lower flash points of the Tag and the Cleveland open cup testers were measured $136^{\circ}C$ and $132^{\circ}C$, respectively. The fire points of the Tag and the Cleveland open cup testers were measured $144^{\circ}C$. respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-hexadecane. The experimental AIT of n-hexadecane was $200^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $128^{\circ}C$ and upper flash point $180^{\circ}C$ for n-hexadecane were 0.42 Vol.% and 4.70 Vol.%.

희박연소기관용 용량방전식 다회수스파크 점화장치의 개발에 관한 기초 연구 (A basic study on development of multiple- spark capacitor discharge igniter for lean burn engine)

  • 이상준;나성오;이종태
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3676-3685
    • /
    • 1996
  • Enhancement of the ignitability was necessary to realize the lean burn engine. The characteristics of multiple-spark capacitor discharge igniter(MSCDI) usefulness of which for lean burn was examined in constant volume combustion chamber and evaluated in spark ignition engine. Noise of MSCDI for engine was restricted by adoption of low voltage control system. It was found that the adaptability for high engine speed was remarkable. Lean limit in engine with MSCDI was extended 10% than conventional coil ignition system. Also maximum brake thermal efficiency was almost enhanced 1%.

정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (1) (A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (1))

  • 박종상;이태원;하종률;정성식
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.45-53
    • /
    • 2004
  • An experimental study was carried out to obtain the fundamental data about the effects of radicals induced injection on premixture combustion. A constant volume combustor divided to the sub-chamber and the main chamber was used. The volume of the sub-chamber is set up to occupy less than 1.5% of that of whole combustion chamber. Radial twelve narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in the sub-chamber will derive the simultaneous multi-point ignition in the main chamber. While the equivalence ratio of pre-mixture in the main chamber and the sub-chamber is uniform. We have examined the effects of the sub-chamber volume, the diameter of passage hole, and the equivalence ratio on the combustion characteristics by means of burning pressure measurement and flame visualization. In the case of radical ignition method(RI), the overall turning time including the ignition delay became very short and the maximum burning pressure was slightly increased in comparison with those of the conventional spark ignition method(SI), that is, single chamber combustion without the sub-chamber. The combustible lean limit by RI method is extended to more ER=0.25 than that by SI method. Therefore the decrease of every emission including NOx and the improvement of fuel consumption is anticipated due to lean burn.

가스터빈 연소기 고공환경 모사 시험을 위한 상압/저온 환경에서의 점화 특성 실험 (A Ignition Test of Gas Turbine Combustor For High Altitude simulation at Low Temperature Condition)

  • 김기우;김태완;김보연;이양석;고영성;전용민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.553-556
    • /
    • 2009
  • 항공기 부품은 다양한 고도의 운용조건을 만족해야 하므로 고고도 성능평가는 필수적이다. 본 연구에서는 가스터빈 엔진의 고공 점화특성을 확인하기 위하여 실물형 보조동력장치를 바탕으로 축소형 모델 연소기를 설계, 제작하여 22,000ft에 해당하는 대기온도 조건을 모사, 점화실험을 수행하였다. 저온 환경 모사를 위해 공기 공급배관에 열교환기를 설치하였고 냉각제로는 드라이아이스를 사용하였다. 실험결과 연소기로 공급되는 공기의 온도가 낮아질수록 점화가 가능한 공기과잉 구간은 감소하였음을 확인하였다.

  • PDF

테트랄린의 연소특성치 평가에 관한 연구 (A Study of the Evaluation of Combustion Properties of Tetralin)

  • 하동명
    • 한국안전학회지
    • /
    • 제33권4호
    • /
    • pp.8-14
    • /
    • 2018
  • In the industrial chemical process involving combustible materials, reliable safety data are required for design prevention, protection and mitigation measures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. The combustion parameters necessary for process safety are lower flash point, upper flash point, fire point, lower explosion limit(LEL), upper explosion limit(UEL)and autoignition temperature(AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. In the chemical industries, tetralin which is widely used as a raw material of intermediate products, coating substances and rubber chemicals was selected. For safe handling of tetralin, the lower and flash point, the fire point, and the AIT were measured. The LEL and UEL of tetralin were calculated using the lower and upper flash point obtained in the experiment. The flash points of tetralin by using the Setaflash and Pensky-Martens closed-cup testers measured $70^{\circ}C$ and $76^{\circ}C$, respectively. The flash points of tetralin using the Tag and Cleveland open cup testers are measured $78^{\circ}C$ and $81^{\circ}C$, respectively. The AIT of the measured tetralin by the ASTM E659 apparatus was measured at $380^{\circ}C$. The LEL and UEL of tetralin measured by Setaflash closed-cup tester at $70^{\circ}C$ and $109^{\circ}C$ were calculated to be 1.02 vol% and 5.03 vol%, respectively. In this study, it was possible to predict the LEL and the UEL by using the lower and upper flash point of tetralin measured by Setasflash closed-cup tester. A new prediction method for the ignition delay time by the ignition temperature has been developed. It is possible to predict the ignition delay time at different ignition temperatures by the proposed model.