• Title/Summary/Keyword: Ignition delay time

Search Result 195, Processing Time 0.04 seconds

An experimental study on the ignition of dusts behind reflected shock waves (고체미립자의 반사압축파에 의한 점화에 관한 실험적 연구)

  • 백승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.118-123
    • /
    • 1987
  • In relation to the dust detonatians which have imposed severe damages on the industry, the ignitability of various dusts has been investigated on a horizontal shock tube in this study. By using a newly designed air injector, very well-distributed clouds could be obtained. The proper reflected shock conditions have been generated by placing a reflector 1.5cm behind the air injector, which reflected the incident shock wave. The incident shock waves in the range of Mach number 2.8-3.3 created the postreflected shock temperature of 1200-1600K. Experimentally the ignition delay was defined as the time interval between the arrival of a reflected shock wave at dusts and the detection of visible light. Measured ignition delays of dusts investigated were located lower than 1msec under the above conditions. These values are one-order higher than those in the incident shock wave condition. In this type of ignitiion process the following three processes are considered to play important roles; heating of a particle, generation of volatile gas by endothermic devolatilization process, and its diffusion from the particle surface and the formation of stoichiometric mixture with oxidizer.

The Response Characteristics of the Hydrogen Peroxide Monopropellant Thruster as Injector and Catalyst Grain Size (인젝터 방식 및 촉매 알갱이 크기에 따른 과산화수소 단일추진제 추력기의 응답 특성)

  • An, Sung-Yong;Park, Dae-Jong;Chung, Seung-Mi;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.19-26
    • /
    • 2009
  • The response characteristics of $H_2O_2$ monopropellant thrusters at a pulse mode were presented in this paper. A catalyst bed was fixed to $MnO_2$/$Al_2O_3$ to investigate the thruster design effect to response time. Three different thrusters (50 N class) having different injectors, ullage volumes, catalyst grain sizes, and reactor volumes were prepared to investigate the response characteristics. As a result, the ignition delay, pressure rising and tail-off time of case 2-2 thruster with 16-20 mesh catalyst size were 14, 108, 94 ms respectively, which were comparable to requirement of response time at commercial hydrazine thrusters.

Effect of semi-return fuel supply system on the startability and HC/NOx emissions during cold transient starting phase in an LPi engine (LPG성상에 따른 세미리턴방식 LPi엔진의 시동성 및 싸이클 별 HC/NOx 배출 특성)

  • Kim, Ju-Won;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2910-2915
    • /
    • 2008
  • This paper was investigated the behaviors of the engine and combustion phenomena for various LPG compositions in the semi-return type system, which is not recircurated to LPG tank through furl rail, applied LPi engine during a cold idle condition and including a cold start of the engine. Cyclic HC and NOx emissions were measured at exhaust port to examine their formation mechanical and reduction mechanical with fast response gas analyzers. Various ignition timing is experimented to study the characteristics of combustion phenomena, HC/NOx emissions during fast idle. Also, this study was investigated start delay time, cylinder pressure, HC/NOx emissions, Mass Fraction Burned, starting time to evaluate performance of transient cold startability. Compared to the return type system, the semi-return type system have advantages in point of production cost and equivalent performance of engine starting time and pressure settling time.

  • PDF

Combustion Characteristics of Hinoki Cypress Louver after Pressure Impregnation with Boric Acid, Borax and Ammonium Phosphate (붕사, 붕산 및 인산암모늄을 가압 함침한 편백 루버의 연소특성)

  • Park, Hyung-Ju
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.1-5
    • /
    • 2015
  • In this study, the combustion characteristics of Hinoki Cypress Louver were measured after performing pressure impregnation with aqueous solution of boric acid, borax, and ammonium phosphate. The characteristics measured include ignition time, critical heat flux, and mass loss rate by incident hear flux (25, 30 and $50kW/m^2$). The samples used for the test were $100{\times}100{\times}10mm$, and the 5 min variation for each incident heat flux was measured 3 times. The results show that the ignition time for incident heat flux of $25kW/m^2$ showed a delay effect of 17.4 to 21.3% except for Type C-H. There was no significant difference at 35 and $50kW/m^2$ in the average mass loss rate in Types A-H and D-H, which had lower rates than Type N-H, which was predicted to be higher than that of Type N-H ($10.7kW/m^2$) by 38.22 to 60.46%. It is thus expected that at the time of initial primary fire, there would be a delay effect against fire spread.

A Study on the Characteristics of Space Charge for the Plasma Display (플라즈마 디스플레이의 공간전하 특성에 관한 연구)

  • 염정덕
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-7
    • /
    • 2001
  • To analyze the driving principle of PDP, the influence on the discharge characteristics of space charge was researched. Space charge generated by the priming discharge shortens delay time of the discharge which happens as follows and shorts response time. Such influences are valid up to about 30㎲ after generating priming discharge. This space charge decreases dicharge ignition voltage of the cell near priming cell and the influences are most greatly alerted on the discharge of cell which is adjacent most. And the dependency to spare charge strengthens because discharge ignition voltage drop grows by narrowing of discharge pulse width. But the influence on space charge was observed very slightly in pulse width 1㎲ or more. Therefore, to cause a steady discharge, pulse width should become 1㎲ or more at least without being influenced for space charge of the adjoining discharge.

  • PDF

Development of a Multi-zone Combustion Model for the Analysis of CAI Engines (CAI 엔진 해석을 위한 multi-zone 연소 모델의 개발)

  • Lee, Kyeong-Hyeon;Lim, Jae-Man;Kim, Young-Rae;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.74-80
    • /
    • 2008
  • A combustion of CAI engine is purely dominated by fuel chemical reactions. In order to simulate the combustion of CAI engine, it should be considered the effect of fuel components and chemical kinetics. So it needs enormous computational power. To overcome this problem reduced problem of needing massive computational power, chemical kinetic mechanism and multi-zone method is proposed here in this paper. A reduced chemical kinetic mechanism for a gasoline surrogate was used in this study for a CAI combustion. This gasoline surrogate was modeled as a blend of iso-octane, n-heptane, and toluene. For the analysis of CAI combustion, a multi-zone method as combustion model for a CAI engine was developed and incorporated into the computational fluid dynamics code, STAR-CD, for computing efficiency. This coupled multi-zone model can calculate 3 dimensional computational fluid dynamics and multi-zoned chemical reaction simultaneously in one time step. In other words, every computational cell interacts with the adjacent cells during the chemical reaction process. It can enhance the reality of multi-zone model. A greatly time-saving and yet still relatively accurate CAI combustion simulation model based on the above mentioned two efficient methodologies, is thus proposed.

Experimental Study on Laminar Lifted Methane Jet Flame Diluted with Nitrogen and Helium

  • Sapkal, Narayan;Lee, Won June;Park, Jeong;Kwon, Oh Boomg
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.387-389
    • /
    • 2014
  • Laminar lifted methane jet flame diluted with nitrogen and helium in co-flow air has been investigated experimentally. This paper examines the role of chemistry, intermediate species responsible for stabilization of lifted flame. To elucidate the stabilization mechanism in lifted methane jet flames with Sc<1, the chemiluminescence intensities of $CH^*$ and $OH^*$ were measured using ICCD camera at various nozzle exit velocities and fuel mole fractions. It has been observed that the $OH^*$ species can play an important role in stabilization of lifted methane jet flame as they are good indicators of heat release rate which can affect on flame speed and increase stability through reduction in ignition delay time.

  • PDF

Experimental Study on Laminar Lifted Methane Jet Flame Diluted with Nitrogen and Helium

  • Sapkal, Narayan;Lee, Won June;Park, Jeong;Kwon, Oh Boomg
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.125-128
    • /
    • 2014
  • Laminar lifted methane jet flame diluted with nitrogen and helium in co-flow air has been investigated experimentally. This paper examines the role of chemistry, intermediate species responsible for stabilization of lifted flame. To elucidate the stabilization mechanism in lifted methane jet flames with Sc<1, the chemiluminescence intensities of $CH^*$ and $OH^*$ were measured using ICCD camera at various nozzle exit velocities and fuel mole fractions. It has been observed that the $OH^*$ species can play an important role in stabilization of lifted methane jet flame as they are good indicators of heat release rate which can affect on flame speed and increase stability through reduction in ignition delay time.

  • PDF

Prediction and Measurement of Autoignition Temperature of Toluene and 2-Butanol System (톨루엔과 2-부탄올 계의 최소자연발화온도의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.73-78
    • /
    • 2015
  • The autoignition temperatures(AIT) of solvent mixture is important index for the safe handling of flammable liquids which constitute the solvent mixtures. Therefore, the AITs of common pure chemical substances are widely reported, but very limited data are available for mixtures. This study, the toluene and 2-butnaol system which used mixture solution solvent was measured the AIT and ignition delay time by using ASTM E659 apparatus. The AITs of toluene and 2-butanol constituted binary system were $547^{\circ}C$ and $400^{\circ}C$, respectively. The experimental AIT of toluene and 2-butanol were a good agreement with the calculated AIT by the proposed equations with a few average absolute deviation(A.A.D.).

Measurement and Prediction of Autoignition Temperature of n-Hexanol+p-Xylene Mixture (노말헥산올과 파라자일렌 혼합물의 최소자연발화온도 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-55
    • /
    • 2016
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-hexanol+p-xylene system by using ASTM E659 apparatus. The AITs of n-hexanol and p-xylene system which constituted binary system were $275^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs of n-hexanol+p-xylene system system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation).