Browse > Article
http://dx.doi.org/10.7731/KIFSE.2015.29.6.001

Combustion Characteristics of Hinoki Cypress Louver after Pressure Impregnation with Boric Acid, Borax and Ammonium Phosphate  

Park, Hyung-Ju (Dept. of Firefighting & Safety Management, Howon University)
Publication Information
Fire Science and Engineering / v.29, no.6, 2015 , pp. 1-5 More about this Journal
Abstract
In this study, the combustion characteristics of Hinoki Cypress Louver were measured after performing pressure impregnation with aqueous solution of boric acid, borax, and ammonium phosphate. The characteristics measured include ignition time, critical heat flux, and mass loss rate by incident hear flux (25, 30 and $50kW/m^2$). The samples used for the test were $100{\times}100{\times}10mm$, and the 5 min variation for each incident heat flux was measured 3 times. The results show that the ignition time for incident heat flux of $25kW/m^2$ showed a delay effect of 17.4 to 21.3% except for Type C-H. There was no significant difference at 35 and $50kW/m^2$ in the average mass loss rate in Types A-H and D-H, which had lower rates than Type N-H, which was predicted to be higher than that of Type N-H ($10.7kW/m^2$) by 38.22 to 60.46%. It is thus expected that at the time of initial primary fire, there would be a delay effect against fire spread.
Keywords
Boric acid; Borax; Ammonium phosphate; Pressure impregnation; Combustion characteristics;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 H. J. Park and S. M. Lee, "Combustion Characteristics of Spruce Wood by Pressure Impregnation with Waterglass and Carbon Dioxide", J. Kor. Inst. Fire Sci. Eng., Vol. 26, No. 44, pp. 18-23 (2012).   DOI
2 H. J. Park, K. H. Oh, E. S. Kim and H. Kim, "A Study on Char Characteristics of Fire Retardant Treated Douglas Fir", J. of Korean Institute of Fire Sci. & Eng., Vol. 19, No. 2, pp. 105-110 (2005).
3 H. J. Park, M. Wen, S. H. Cheon, J. W. Hwang, and S. W. Oh, "Flame Retardant Performance of Wood Treated with Flame Retardant Chemicals", J. of the Korean Wood Science and Technology, Vol. 40, No. 5, pp. 311-318 (2012).   DOI
4 D. W. Son, M. R. Kang, J. I. Kim and S. B. Park, "Fire Performance of the Wood Treated with Inorganic Fire Retardants", J. of the Korean Wood Science and Technology, Vol. 40, No. 5, pp. 335-342 (2012).   DOI
5 J. Z. Xu, M. Gao, H. Z. Guo, X. I. Liu, Z. Li, H. Wang and C. M. Tian, "Study on the Thermal Degradation of Celluloseic Fiber Treated with Flame Retardants", J. Fire Sciences, Vol. 20, pp. 227-235 (2002).   DOI
6 O. Grexa and H. Lubke, "Flammability Parameters of Wood Tested on a Cone Calorimeter", Polymer Degradation and Stability, Vol. 74, pp. 427-432 (2001).   DOI
7 B. Garba, "Effects of Zinc Borate as Flame Retardant Formulation on Some Tropical Woods", Polymer Degradation and Stability, Vol. 64, pp. 517-522 (1999).   DOI
8 D. S. Baker, "Wood in Fire, Flame Spread and Flame Retardant Treatments", Chemistry and Industry, Vol. 18, pp. 485-490 (1981).
9 H. J. Park, "A Study on the Burning Rate of Fire Retardant Treated Wood", J. of the KOSOS, Vol. 22, No. 6, pp. 46-54 (2007).
10 J. M. Choi, "A Study on Combustion Characteristics of Fire Retardant Treated Pinus Densiflora and Pinus Koraiensis", J. of the Korean Wood Science and Technology, Vol. 39, No. 3, pp. 244-251 (2011).   DOI