• Title/Summary/Keyword: Idle RPM

Search Result 35, Processing Time 0.03 seconds

A study on the idle speed control under load disturbance (변동에 강인한 공회전속도 제어에 관한 연구)

  • 최후락;장광수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1115-1119
    • /
    • 1996
  • The objective of this paper is to study on the idle speed control sing the fuzzy logic controller under load disturbance. The inputs of the fuzzy controller are error of rpm and rpm variation. The output of fuzzy controller is an ISC motor step. The airflow is controlled by the ISC motor movement and the idle speed is controlled by the airflow control. During the control, air to fuel ratio was checked by LAMBDA sensor. All experiments were carried in real vehicle.

  • PDF

A Study on the Idle Speed Control under Load Disturbance (부하변동에 강인한 엔진 공회전 속도제어에 관한 연구)

  • 최후락;장광수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.37-50
    • /
    • 1997
  • The objective of this paper is to study on the idle speed control using the fuzzy logic controller under load disturbance. The design procedure for fuzzy logic controller depends on the expert's knowledge or trial and error. The inputs of the fuzzy controller are error of rpm and variation of rpm. The output of the fuzzy controller is an ISC motor step and ignition timing. The airflow is controlled by the ISC motor movement and the idle speed is controlled by the airflow control and ignition timing control. During the control, air to fuel was checked by LAMBDA sensor. All experiments were performed in a real vehicle.

  • PDF

Idle Quality Optimization Study (공회전시 차량의 소음진동현상의 질적개선에 대한 고찰)

  • ;Norbert Wiehagen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.342-352
    • /
    • 2003
  • Idle NVH characteristics are one of the most important aspects among the vehicle performances. Vehicle developers are devoted to improve vehicle interior noise and steering wheel and seat vibrations. In order to improve the idle quality, noise and vibration transfer path should be carefully evaluated. Also, effects of various components related to the idle performance should be confirmed. A general procedure for improving the idle qualify is described in detail. The relationship among cylinder pressure characteristics, crankshaft rotational speed variation, and vehicle vibrations is also investigated. Influences of drive shaft, torque converter, air conditioning system, vehicle structure including engine mount system, and idle control parameters on the vehicle idle quality are studied. Weak points of typical vehicles on the idle qualify are identified. Some of improvement measures are proposed and verified.

  • PDF

Study on the Apply Characteristics to the Gasoline Engine of Exhaust Heat Recovery Device Counterflow (대향류식 배기열 회수장치의 가솔린기관 적용 특성에 관한 연구)

  • Shin, Suk-Jae;Kim, Jong-Il;Jung, Young-Chul;Choi, Doo Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.153-158
    • /
    • 2013
  • The purpose of this study is to investigate the performance characteristics of the counterflow exhaust heat recovery device for the applied gasoline engines. The EHRS device is installed behind the catalyst. This study investigates the engine warm-up characteristic, the exhaust noise characteristic, the back-pressure characteristic. The engine warm-up characteristics is (load 0%, load 10%, load 20%) in (idle, 1000rpm, 1500rpm, 2000rpm, 2500rpm) conditions by measuring the time it warmed up, coolant temperature ($25^{\circ}C{\sim}80^{\circ}C$) until the performance evaluation is performed. The wide open throttle and the coast down the exhaust noise and the back-pressure characteristic experiment repeated twice. The test conditions is 950rpm~6,050rpm proceed experiment repeated 3-5 times. Load 0% idle conditions except the results improved engine warm-up characteristics. The exhaust noise obtain similar results the BASE+EHRS W/O_FRT_MUFF with BASE and back-pressure to obtain similar results BASE+EHRS W/O_FRT_ MUFF with BASE+EHRS.

Controller Design for Stable Engine Idle Mode (안정한 엔진 공회전 모드를 위한 제어기 설계)

  • 이영춘;방두열;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • The engine idle speed mode becomes worse as one drives a vehicle for several years. This is due to ageing of engine and power-train parts. In this case, unstable idle conditions such as engine stall and droop are frequently experienced when the engine gets heavy torque loads due to power steering pump and air conditioning compressor. The objective of this paper is to study on the idle speed control using PID controller under load disturbances. The input of the PID controller is an error of rpm. The output of the PID controller is an ISCV duty cycle. The dSPACE Controller Boards are used to interface with engine. The on-vehicle test is realized using by SIMULINK and BLOCKSETS tools. The real time interface control panel supplied by Control Desk S/W is designed to have good results in engine idle speed control.

  • PDF

Design of Optimal Idle Speed Controller by Sliding Mode Observer (슬라이딩 모드 관측기에 의한 최적의 공회전 제어기 설계)

  • Lee, Young-Choon;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.161-167
    • /
    • 2001
  • This paper presents an approach to nonlinear engine idle controller and intake manifold absolute pressure(MAP) observer based on mean torque production model. A stable engine idle speed is important in that the unstable engine Idle mode can make engine to drooping or stall state. A sliding fuzzy controller has been designed to control engine idle speed under load disturbance. A sliding observer is also developed to estimate the intake manifold absolute pressure and compared with the actual MAP sensor value. The sliding mode observer has shown good robustness and good tracking performance. The inputs of sliding fuzzy controller are the errors of rpm and MAP. The output is a duty cycle(DC) for driving a idle speed control valve(ISCV).

  • PDF

Idle Vibration Development Procedure of 4WD SUV (SUV차량의 Idle 성능 개발)

  • 최승우;이남영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.120-124
    • /
    • 2003
  • NVH issue at idle condition is one of the major concerns of Passenger and Commercial Vehicle including Sports Utility Vehicle Especially steering wheel vibration at idle condition is a very complex problem and affected by firing frequency of the engine, stiffness of a steering wheel system and the body to which the steering wheel system is attached. To avoid vibration mode coupling between each system of a vehicle, experimental and analytical method has been used at the pre-prototype stage. The resonance frequency of the body and the frame has been decoupled by CAE and the resonance frequency of steering wheel system has been set in between the 1st bending frequency of body and frame. These Results has been used as design guidelines tot the prototype drawing stage. The experimental verification of tile modified pre-prototype vehicle shows good results of the vibration mode decouple. Modal test of prototype vehicle also confirms the vibration mode decouple between each system.

  • PDF

A Study on the Improvement of Combustion Stability for SI Engine at Idle Operation (SI 기관의 공회전시 연소 안정성 향상에 관한 연구)

  • Lee, J.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.259-266
    • /
    • 1998
  • In the SI engine, the improvement of combustion stability is important not only for the fuel consumption rate but also for the emission control at idling of engine. Thus the engine speed fluctuation at idle operation mainly comes from cyclic variation of combustion in the SI engine. In this syudy, the improvement of combustion stability for the SI engine at idle condition by the cooling water temperature, duty ratio of ISC, spark ignition timing as well as the reducement of the harmful exhaust gas emission was discussed.

  • PDF

Design of Stable Controller to Sudden A/C Disturbance (급격한 에어콘 외란에 안정한 제어기 설계)

  • 이영춘;권대규;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.106-112
    • /
    • 2000
  • The purpose of this paper is to study on the control of the engine idle speed under sudden A/C load which is one of the most severe disturbances on engines. Three types of the closed-loop controller are developed for the stable engine idle speed control. The input of the controller is an error of rpm. The output of the controller is an ISCV duty cycle. The anticipation delay is considered to deal with the delay time of the air mass in engine. The PID, Fuzzy and PID-type Fuzzy controllers with the anticipation delay have improved the engine idle speed condition more than current ECU map table under the A/C load.

  • PDF

Surge Control of Turbofan Engine Compressor with the Variable Inlet Guide Vane (가변 안내익을 이용한 터보팬 엔진 압축기의 서지 제어)

  • Bae, Kyoungwook;Kim, Sangjo;Han, Dongin;Min, Chanoh;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.539-546
    • /
    • 2013
  • Surge phenomenon can be occurred in a compressor when compressor performance of turbofan engine for an aircraft is changed considerably in a short time on the cases like take-off phase and changing of RPM from idle to maximum, because performance of aircraft engine is changed suddenly. This study is aimed to avoid surge in a compressor. Dynamic simulation in a compressor is modeled by simulink in specific condition. Fuel flow is control input, rpm and air mass flow are expressed in terms of transfer function. Surge margin is obtained by using compressor performance map from NPSS. VIGV(Variable Inlet Guide Vane) is controlled by PD controller with difference between surge margin and reference. Finally this paper verifies IGV can prevent surge phenomenon in a compressor.