• 제목/요약/키워드: IZO TFT

검색결과 35건 처리시간 0.022초

Solution-Processed Al2O3 확산층을 이용한 Sputtering IZO Thin Film Transistor의 안정성 향상 (Improved Stability Sputtered IZO Thin Film Transistor Using Solution Processed Al2O3 Diffusion Layer)

  • 황남경;임유성;이정석;이세형;이문석
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.273-277
    • /
    • 2018
  • This research introduces the sputtered IZO thin film transistor (TFT) with solution-processed $Al_2O_3$ diffusion layer. IZO is one of the most commonly used amorphous oxide semiconductor (AOS) TFT. However, most AOS TFTs have many defects that degrade performance. Especially oxygen vacancy in the active layer. In previous research, aluminum was used as a carrier suppressor by binding the oxygen vacancy and making a strong bond with oxygen atoms. In this paper, we use a solution-processed $Al_2O_3$ diffusion layer to fabricate stable IZO TFTs. A double-layer solution-processed $Al_2O_3$-sputtered IZO TFT showed better performance and stability, compared to normal sputtered IZO TFT.

A Study on CF IZO Application

  • 박재익;김동환;김승율;김태곤;박준용
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2008년도 제35회 하계학술대회 초록집
    • /
    • pp.276-276
    • /
    • 2008
  • PDF

Al2O3 층을 이용한 저온공정에서의 산화물 기반 트랜지스터 컨택 특성 향상 (Improved Contact property in low temperature process via Ultrathin Al2O3 layer)

  • 정성현;신대영;조형균
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.55-55
    • /
    • 2018
  • Recently, amorphous oxides such as InGaZnO (IGZO) and InZnO (IZO) as a channel layer of an oxide TFT have been attracted by advantages such as high mobility, good uniformity, and high transparency. In order to apply such an amorphous oxide TFTs to a display, the stability in various environments must be ensured. In the InGaZnO which has been studied in the past, Ga elements act as a suppressor of oxygen vacancy and result in a decreased mobility at the same time. Previous studies have been showed that the InZnO, which does not contain Ga, can achieve high mobility, but has relatively poor stability under various instability environments. In this study, the TFTs using $IZO/Al_2O_3$ double layer structure were studied. The introduction of an $Al_2O_3$ interlayer between source/drain and channel causes superior electrical characteristics and electrical stability as well as reduced contact resistance with optimally perfect ohmic contact. For the IZO and $Al_2O_3$ bilayer structures, the IZO 30nm IZO channels were prepared at $Ar:O_2=30:1$ by sputtering and the $Al_2O_3$ interlayer were depostied with various thickness by ALD at $150^{\circ}C$. The optimal sample exhibits considerably good TFT performance with $V_{th}$ of -3.3V and field effect mobility of $19.25cm^2/Vs$, and reduced $V_{th}$ shift under positive bias stress stability, compared to conventional IZO TFT. The enhanced TFT performances are closely related to the nice ohmic contact properties coming from the defect passivation of the IZO surface inducing charge traps, and we will provide the detail mechanism and model via electrical analysis and transmission line method.

  • PDF

용액공정으로 제작한 PVP-IZO TFT의 UV-O3 처리를 통한 전기적 특성 향상 연구 (Study on Electrical Characteristic Improvement of PVP-IZO TFT Prepared by Solution Process Using UV-O3 Treatment)

  • 김유정;정준교;박정현;정병준;이가원
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.66-69
    • /
    • 2017
  • In this paper, solution based Indium Zinc Oxide thin film transistors (IZO TFTs) were fabricated with PVP gate dielectric. To enhance the electrical properties, UV-O3 treatment is proposed on solution based IZO TFTs. The gate leakage current and interface trap density is compatible with conventional ZnO-based TFT with inorganic gate insulator. Especially, the UV-treated device shows improved electrical characteristics compared to the untreated device. These results can be explained by X-ray photoelectron spectroscopy (XPS) analysis, which shows that the oxygen vacancy of UV-O3 treatment is higher than that of no treatment.

  • PDF

Effects of Al-doping on IZO Thin Film for Transparent TFT

  • Bang, J.H.;Jung, J.H.;Song, P.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.207-207
    • /
    • 2011
  • Amorphous transparent oxide semiconductors (a-TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). Recently, Nomura et al. demonstrated high performance amorphous IGZO (In-Ga-Zn-O) TFTs.1 Despite the amorphous structure, due to the conduction band minimum (CBM) that made of spherically extended s-orbitals of the constituent metals, an a-IGZO TFT shows high mobility.2,3 But IGZO films contain high cost rare metals. Therefore, we need to investigate the alternatives. Because Aluminum has a high bond enthalpy with oxygen atom and Alumina has a high lattice energy, we try to replace Gallium with Aluminum that is high reserve low cost material. In this study, we focused on the electrical properties of IZO:Al thin films as a channel layer of TFTs. IZO:Al were deposited on unheated non-alkali glass substrates (5 cm ${\times}$ 5 cm) by magnetron co-sputtering system with two cathodes equipped with IZO target and Al target, respectively. The sintered ceramic IZO disc (3 inch ${\phi}$, 5 mm t) and metal Al target (3 inch ${\phi}$, 5 mm t) are used for deposition. The O2 gas was used as the reactive gas to control carrier concentration and mobility. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of IZO:Al thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

P3HT와 IZO 전극을 이용한 thin film transistors 제작 (Fabricated thin-film transistors with P3HT channel and $NiO_x$ electrodes)

  • 강희진;한진우;김종연;문현찬;박광범;김태하;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.467-468
    • /
    • 2006
  • We report on the fabrication of P3HT-based thin-film transistors (TFT) that consist of indium-zinc-oxide (IZO), PVP (poly-vinyl phenol), and Ni for the source-drain (S/D) electrode, gate dielectric, and gate electrode, respectively. The IZO S/D electrodes of which the work function is well matched to that of P3HT were deposited on a P3HT channel by thermal evaporation of IZO and showed a moderately low but still effective transmittance of ~25% in the visible range along with a good sheet resistance of ${\sim}60{\Omega}/{\square}$. The maximum saturation current of our P3HT-based TFT was about $15{\mu}A$ at a gate bias of -40V showing a high field effect mobility of $0.05cm^2/Vs$ in the dark, and the on/off current ratio of our TFT was about $5{\times}10^5$. It is concluded that jointly adopting IZO for the S/D electrode and PVP for gate dielectric realizes a high-quality P3HT-based TFT.

  • PDF

펨토초 레이저 어닐링 기술을 이용한 용액 공정 기반의 비정질 인듐 징크 산화물 트랜지스터에 관한 연구 (Study on Solution Processed Indium Zinc Oxide TFTs Using by Femtosecond Laser Annealing Technology)

  • 김한상;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제31권1호
    • /
    • pp.50-54
    • /
    • 2018
  • In this study, a femtosecond laser pre-annealing technology based on indium zinc oxide (IZO) thin-film transistors (TFTs) was investigated. We demonstrated a stable pre-annealing process to analyze the change in the surface structures of thin-films, and we improved the electrical performance. Furthermore, static and dynamic electrical characteristics of IZO TFTs with n-channel inverters were observed. To investigate the static and dynamic responses of our solution-processed IZO TFTs, simple resistor-load-type inverters were fabricated by connecting a $1-M{\Omega}$ resistor. The femtosecond laser pre-annealing process based on IZO TFTs showed good performance: a field-effect mobility of $3.75cm_2/Vs$, an $I_{on}/I_{off}$ ratio of $1.8{\times}10^5$, a threshold voltage of 1.13 V, and a subthreshold swing of 1.21 V/dec. Our IZO-TFT-based N-MOS inverter performed well at operating voltage, and therefore, is a good candidate for advanced logic circuits and display backplane.

용액 공정을 이용한 IZO 트랜지스터의 전기적 성능에 대한 박막 두께의 영향 (Effect of Thin-Film Thickness on Electrical Performance of Indium-Zinc-Oxide Transistors Fabricated by Solution Process)

  • 김한상;경동구;김성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권8호
    • /
    • pp.469-473
    • /
    • 2017
  • We investigated the effect of different thin-film thicknesses (25, 30, and 40 nm) on the electrical performance of solution-processed indium-zinc-oxide (IZO) thin-film transistors (TFTs). The structural properties of the IZO thin films were investigated by atomic force microscopy (AFM). AFM images revealed that the IZO thin films with thicknesses of 25 and 40 nm exhibit an uneven distribution of grains, which deforms the thin film and degrades the performance of the IZO TFT. Further, the IZO thin film with a thickness of 30 nm exhibits a homogeneous and smooth surface with a low RMS roughness of 1.88 nm. The IZO TFTs with the 30-nm-thick IZO film exhibit excellent results, with a field-effect mobility of $3.0({\pm}0.2)cm^2/Vs$, high Ion/Ioff ratio of $1.1{\times}10^7$, threshold voltage of $0.4({\pm}0.1)V$, and subthreshold swing of $0.7({\pm}0.01)V/dec$. The optimization of oxide semiconductor thickness through analysis of the surface morphologies can thus contribute to the development of oxide TFT manufacturing technology.

SU-8 패시베이션을 이용한 솔루션 IZO-TFT의안정성 향상에 대한 연구 (Stability Enhancement of IZOthin Film Transistor Using SU-8 Passivation Layer)

  • 김상조;이문석
    • 전자공학회논문지
    • /
    • 제52권7호
    • /
    • pp.33-39
    • /
    • 2015
  • 본 연구에서는 SU-8을 절연층으로 사용해 솔루션 공정을 바탕으로 하여 Indium Zinc Oxide(IZO) thin film transistor(TFT)의 안정성을 향상에 대해 연구하였다. 매우 점성이 강하며 negative lithography 용으로 사용되는 SU-8은 기계적, 화학적으로 높은 안정도를 가진다. 그리고 이 SU-8을 사용해 TFT층의 위에 스핀코팅을 사용해 절연막 층을 쌓고 photo lithography를 이용해 patterning을 하였다. SU-8층에 의한 positive bias stress(PBS)에 대한 전기적 특성 향상의 이유를 연구하기 위해 TFT에 X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FTIR) 분석을 시행하였다. SU-8을 절연층으로 한 TFT는 좋은 전기적 특성을 보였으며, 전류점멸비, 전자이동도, 문턱전압, subthreshold swing이 각각 $10^6$, $6.43cm^2/V{\cdot}s$, 7.1V, 0.88V/dec로 측정되었다. 그리고 3600초 동안 PBS를 가할 시 ${\Delta}V_{th}$는 3.6V로 측정되었다. 그러나 SU-8 층이 없는 경우 ${\Delta}V_{th}$는 7.7V 였다. XPS와 FTIR을 분석한 결과, SU-8 절연층이 TFT의 산소의 흡/탈착을 차단하는 특성에 의해 PBS에 강한 특성을 나타나게 함을 확인하였다.

플라즈마 처리가 IZO기반 TFT의 전기적 특성과 신뢰성에 끼치는 영향 (The effects of the plasma treatment on the electrical properties and stability of IZO-based TFTs)

  • 송창우;홍찬화;신재헌;김경현;박래만;양지웅;서우형;권혁인;정우석
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.246-247
    • /
    • 2014
  • 고사양을 요구하는 차세대 디스플레이용 소자 중 하나로 산화물 TFT(thin-film transistor)가 주목받고 있으며, 기존의 a-Si TFT보다 월등한 성능을 보인다. 소자의 특성을 개선시키기 위해 back channel 표면에 플라즈마 처리를 하였다. 플라즈마처리시 산소의 비중이 늘어날수록 산화물 TFT의 특성을 개선하는데 도움을 주는 것을 확인하였다.

  • PDF