• Title/Summary/Keyword: IZO(In2O3-ZnO)

Search Result 34, Processing Time 0.03 seconds

Local structure of transparent flexible amorphous M-In-ZnO semiconductor

  • Son, L.S.;Kim, K.R.;Yang, D.S.;Lee, J.C.;Sung, N.;Lee, J.;Kang, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.164-164
    • /
    • 2010
  • The impurity doped ZnO has been extensively studied because of its optoelectric properties. GIZO (Ga-In-Zn-O) amorphous oxide semiconductors has been widely used as transparent flexible semiconductor material. Recently, various amorphous transparent semiconductors such as IZO (In-Zn-O), GIZO, and HIZO (Hf-In-Zn-O) were developed. In this work, we examined the local structures of IZO, GIZO, and HIZO. The local coordination structure was investigated by the extended X-ray absorption fine structure. The IZO, GIZO and HIZO thin films ware deposited on the glass substrate with thickness of 400nm by the radio frequency sputtering method. The targets were prepared by the mixture of $In_2O_3$, ZnO and $HfO_2$ powders. The percent ratio of In:Zn in IZO, Ga:In:Zn in GIZO and Hf:In:Zn in HIZO was 45:55, 33:33:33 and 10:35:55, respectively. In this work, we found that IZO, GIZO and HIZO are all amorphous and have a similar local structure. Also, we obtained the bond distances of $d_{Ga-O}=1.85\;{\AA}$, $d_{Zn-O}=1.98\;{\AA}$, $d_{Hf-O}=2.08\;{\AA}$, $d_{In-O}=2.13\;{\AA}$.

  • PDF

Effects of ZnO addition on Electrical Resistivity and Optical Transmittance of ITO Thin Film (ITO 박막의 전기저항과 광투과도 특성에 미치는 ZnO 첨가 효과)

  • Chae, Hong-Choi;Hong, Joo-Wha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.367-373
    • /
    • 2007
  • [ $In_2O_3-ZnO(IZO)$ ] and $In_2O_3-ZnO-SnO_2(IZTO)$ thin films were prepared on EAGLE 2000 glass webs in a Ar gas by RF-Magnetron sputtering. Electrical resistivity and optical transmittance of the films were investigated. IZO, IZTO film showed excellent optical transmittance of 85 % at the visible $400{\sim}$780 nm wavelength. Electrical properties of IZO film have $6.50{\times}10^{-4}{\Omega}cm$ (95 $In_2O_3$ : 5 ZnO wt.%) and $5.20{\times}10^{-4}{\Omega}cm$ (90 : 10 wt.%), IZTO film have $8.00{\times}10^{-4}{\Omega}cm$ (90 $In_2O_3$ : 3 ZnO : 7 $SnO_2$ wt.%) and $6.50{\times}10^{-4}{\Omega}cm$ (90 : 7 : 3 wt.%). Substitution of SnO to ZnO in ITO films showed slightly lower electrical conductivity than ITO film but showed similar optical transmittance.

Highly Transparent Indium Oxide Doped ZnO Spreading Layer for GaN Based Light Emitting Diodes

  • Lim, Jae-Hong;Park, Seong-Ju
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.443-446
    • /
    • 2009
  • This study develops a highly transparent ohmic contact scheme using indium oxide doped ZnO (IZO) as a current spreading layer for p-GaN in order to increase the optical output power of nitride-based lightemitting diodes (LEDs). IZO based contact layers of IZO, Ni/IZO, and NiO/IZO were prepared by e-beam evaporation, followed by a post-deposition annealing. The transmittances of the IZO based contact layers were in excess of 80% throughout the visible region of the spectrum. Specific contact resistances of $3.4\times10^{-4}$, $1.2\times10^{-4}$, $9.2\times0^{-5}$, and $3.6\times10^{-5}{\Omega}{\cdot}cm^2$ for IZO, Ni/Au, Ni/IZO, and NiO/IZO, respectively were obtained. The forward voltage and the optical output power of GaN LED with a NiO/IZO ohmic contact was 0.15 V lower and was increased by 38.9%, respectively, at a forward current of 20 mA compared to that of a standard GaN LED with an Ni/Au ohmic contact due to its high transparency, low contact resistance, and uniform current spreading.

Improved Contact property in low temperature process via Ultrathin Al2O3 layer (Al2O3 층을 이용한 저온공정에서의 산화물 기반 트랜지스터 컨택 특성 향상)

  • Jeong, Seong-Hyeon;Sin, Dae-Yeong;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.55-55
    • /
    • 2018
  • Recently, amorphous oxides such as InGaZnO (IGZO) and InZnO (IZO) as a channel layer of an oxide TFT have been attracted by advantages such as high mobility, good uniformity, and high transparency. In order to apply such an amorphous oxide TFTs to a display, the stability in various environments must be ensured. In the InGaZnO which has been studied in the past, Ga elements act as a suppressor of oxygen vacancy and result in a decreased mobility at the same time. Previous studies have been showed that the InZnO, which does not contain Ga, can achieve high mobility, but has relatively poor stability under various instability environments. In this study, the TFTs using $IZO/Al_2O_3$ double layer structure were studied. The introduction of an $Al_2O_3$ interlayer between source/drain and channel causes superior electrical characteristics and electrical stability as well as reduced contact resistance with optimally perfect ohmic contact. For the IZO and $Al_2O_3$ bilayer structures, the IZO 30nm IZO channels were prepared at $Ar:O_2=30:1$ by sputtering and the $Al_2O_3$ interlayer were depostied with various thickness by ALD at $150^{\circ}C$. The optimal sample exhibits considerably good TFT performance with $V_{th}$ of -3.3V and field effect mobility of $19.25cm^2/Vs$, and reduced $V_{th}$ shift under positive bias stress stability, compared to conventional IZO TFT. The enhanced TFT performances are closely related to the nice ohmic contact properties coming from the defect passivation of the IZO surface inducing charge traps, and we will provide the detail mechanism and model via electrical analysis and transmission line method.

  • PDF

ZnO 첨가가 투명전도박막의 전기저항과 광투과도에 미치는 특성

  • Chae, Hong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.183-183
    • /
    • 2010
  • 본 연구에서는 기존의 투명전도박막(ITO) 재료인 Sn 성분을 Zn로 치환하여, Zn의 성분함량 변 화에 따른 투명전도박막의 특성을 조사하기 위하여, Zn이 100% 치환된 $In_2O_{3(90wt%)}-ZnO_(10wt%)$ (IZO) 그리고 Zn이 3 %와 7 % 치환된 $In_2O_{3(90wt%)}-ZnO_{(3wt%)}-SnO_{2(7wt%)}$, $In_2O_{3(90wt%)}-ZnO_{(7wt%)}-SnO_{2(3wt%)}$ (IZTO) 등의 타겟을 제작하여 RF-magnetron sputtering 법으로 투명전도박막을 성장하였다. 각각의 박막에 대해서 전기적 특성조사와 가시광선영역에서의 광투과도 특성, 성막 특성, 그리고 구조적 특성을 조사하였다. Sn이 100% Zn으로 치환된 IZO 박막의 경우 조성 성분비가 90 : 10 wt.%에서 비저항 값이 $5.2{\times}10^{-4}\;{\Omega}cm$ 정도로 전기전도성이 매우 우수한 것으로 나타났으며, 또한 X-ray 회절패턴 분석결과 성분비에 관계없이 비정질구조임을 확인 하였다. Sn이 일부 Zn으로 치환된 IZTO 박막의 경우 성분비가 90(In) : 7(Zn) : 3(Sn) wt%의 경우 비저항 값은 $6.5{\times}10^{-4}\;{\Omega}cm$ 정도로 우수한 것으로 나타났으며, X-ray 회절패턴 분석결과 비정질 구조임을 확인하였다. 광학적 특성으로는 가시광선영역(400~780nm)에서 IZO, IZTO 박막은 85% 이상의 매우 우수한 투과율을 나타내었다.

  • PDF

Heat treatment effects on the electrical properties of $In_2O_3$-ZnO films prepared by rf-magnetron sputtering method (마그네트론 스퍼터링 방법으로 제작된 $In_2O_3$-ZnO 박막의 전기적 특성에 대한 열처리 효과)

  • Kim, Hwa-Min;Kim, Jong-Jae
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.238-244
    • /
    • 2005
  • IZO thin films are prepared on a corning 7059 glass substrate in a mixed gases of Ar +$O_2$ by rf-magnetron sputtering, using a powder target with a composition ratio of $In_{2}O_{3}$ : ZnO=90 : 10 $wt.\%$. Their electrical sheet resistance are strongly dependent on the oxygen concentration introduced during the deposition, a minimum resistivity of $3.7\times10^{-4}\Omega\cdot$ cm and an average transmittance over $85\%$ in the visible range are obtained in a film deposited in pure Ar gas which is close to near the stoichiometry. During the heat treatment from room temperature up tp $600^{\circ}C$ in various environments, the electrical resistance changes are explained by cyrstallizations or oxidizations of In metal and InO contained in the IZO film. The electrical properties due to oxygen adsorption and phase transitions occurring at temperatures over $40000^{\circ}C$ during heat treatment in air are also investigated.

Effects of Deposition Thickness and Oxygen Introduction Flow Rate on Electrical and Optical Properties of IZO Films (증착두께 및 산소도입속도가 IZO 필름의 전기 및 광학적 특성에 미치는 영향)

  • Park, Sung-Hwan;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.224-229
    • /
    • 2010
  • Transparent conductive oxide films have been widely used in the field of flat panel display (FPD). Transparent conductive Indium Zinc Oxide (IZO) thin films with excellent chemical stability have attracted much attention as an alternative material for Indium Tin Oxide (ITO) films. In this study, using $In_2O_3$ and ZnO powder mixture with a ratio of 90 : 10 wt% as a target, IZO films are prepared on polynorbornene (PNB) substrates by electron beam evaporation. The effect of thickness and $O_2$ introduction flow rate on the optical, electrical, structural properties and surface composition of deposited IZO films were investigated by UV/Visible spectrophotometer, 4-point probe method, SEM, XRD and XPS.

High Transparent, High Mobility MoO3 Intergraded InZnO Films for Use as a Transparent Anode in Organic Solar cells

  • Kim, Hyo-Jung;Kang, Sin-Bi;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.343-343
    • /
    • 2014
  • We reported on the electrical, optical, structural and morphological properties fabricated by co-sputtering for use as an anode for organic solar cells (OSCs). By adjusting RF and DC power of $MoO_3$ and IZO targets during co-sputtering, we fabricated the $MoO_3$-IZO electrode with graded content of the $MoO_3$ on the IZO films. At optimized $MoO_3$ thickness of 20 nm, the $MoO_3$ graded IZO electrode showed a higher mobility ($33cm^2/V-Sec$) than directly deposited $MoO_3$ on IZO film ($26cm^2/V-Sec$). At visible range (400nm~800nm), optical transmittance of the $MoO_3$ graded IZO electrode is higher than that of directly deposited $MoO_3$ on IZO film. High mobility of $MoO_3$ graded on IZO is attributed to less interface scattering between $MoO_3$ and IZO. To investigate the feasibility of $MoO_3$ graded IZO films, we fabricated conventional P3HT:PCBM based OSCs with $MoO_3$ graded IZO as a function of MoO3 thickness. The OSC fabricated on the $MoO_3$ graded IZO anode showed a fill factor of 66.53%, a short circuit current of $8.121mA/cm^2$, an open circuit voltage of 0.592 V, and a power conversion efficiency of 3.2% comparable to OSC fabricated on ITO anode and higher than directly deposited $MoO_3$ on IZO film. We suggested possible mechanism to explain the high performance of OSCs with a $MoO_3$ graded IZO.

  • PDF

Electrical and Optical Properties of IZO Films Deposited on Polynorbornene Substrate (Polynorbornene 기판 위에 증착된 IZO 필름의 전기 및 광학적 특성연구)

  • Park, Sung-Hwan;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.612-616
    • /
    • 2009
  • Transparent conductive oxide (TCO) films have been widely used in the field of flat panel display industry. Transparent conductive indium zinc oxide (IZO) thin films with excellent chemical stability have attracted much attention as an alternative material for indium tin oxide (ITO) films. In this study, using a $In_2O_3$ and ZnO powder mixture with a ratio of 90 : 10wt% as a target, IZO films were prepared on polynorbornene (PNB) substrates by electron beam evaporation. The effect of substrate temperature and $O_2$ introduction flow rate were investigated in terms of electrical and optical properties of deposited IZO films. The best electrical and optical properties we obtained from this study were sheet resistance value of $5.446{\times}10^2{\Omega}/{\boxempty}$ and optical transmittance of 87.4% at 550 nm at $O_2$ introduction flow rate of 4 sccm, deposition rate of $2{\AA}$/sec, thickness of 1000 $\AA$ and substrate temperature of $150^{\circ}C$.

Transport and optical properties of transparent conducting oxide In2O3:Zn (비정질 투명전도막 In2O3:Zn의 전기적 광학적 특성)

  • 노경헌;최문구;박승한;주홍렬;정창오;정규하;박장우
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.455-459
    • /
    • 2002
  • The transport and optical properties of $In_2O_3$:Zn(IZO) thin films grown by DC magnetron sputtering deposition have been studied. The deposition temperatures ($T_s$) were varied from room temperature to $400^{\circ}C$ in $50^{\circ}C$ steps. The IZO films are an amorphous phase for $T_s$<$300^{\circ}C$ and polycrystalline phase for $350^{\circ}C$$T_s$. In contrast to ordinary films, amorphous IZO films have lower resistivity and higher optical transmittance than polycrystalline IZO films. The resistivity of amorphous IZO was in the range of 0.29~0.4 m$\Omega$cm and that of polycrystalline IZO was in the range of 1~4 m$\Omega$cm. The carrier type for IZO film was found to be n-type, and the carrier density, was $3~5{\times}10^{20}/cm^3$. The Hall mobility, $({\mu}_H)$, was 20~$50\textrm{cm}^2$/V.sec. The predominant scattering mechanisms in both amorphous and polycrystalline IZO films were believed to be ionized impurity scattering and lattice scattering. The visible transmittance of the IZO films, which decreases with an increase of TS, was above 80%.