• Title/Summary/Keyword: ITS primer

Search Result 320, Processing Time 0.037 seconds

Notes on Five Unrecorded Endophytic Fungi Isolated from Coniferous Leaves and Orchid Roots in Korea (한국에 서식하는 침엽수의 잎과 난초과 식물의 뿌리에서 분리한 5종의 국내 미기록 내생균)

  • Park, Hyeok;Lee, Bong-Hyung;Bae, Yu-Ra;Kim, Dong-Yeo;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.365-370
    • /
    • 2016
  • We collected leaves of Pinus koraiensis and Thuja koraiensis and roots of Bletilla striata from various sites in Korea. The leaf and root samples were surface-sterilized and endophytic fungi were isolated. Fungal isolates were identified based on their morphological characteristics and a phylogenetic analysis of internal transcribed spacer regions, large subunit regions, and the ${\beta}$-tubulin gene. Consequently, we identified five species of endophytic fungi, namely Colletotrichum simmondsii, Fusarium sterilihyphosum, Diatrypella pulvinata, Ochroconis globalis, and Sphaeria chrysosperma. These species have not been previously reported in Korea and we report them here with descriptions and illustrations.

Genetic Variation in Flammulina velutipes (팽이버섯의 유전적 변이)

  • Kim, Jong-Bong;Jeong, Ja-In
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1434-1442
    • /
    • 2011
  • A genetic variation within 29 strains of F. velutipes was analyzed by internal transcribed spacer (ITS) sequence analysis and random amplified polymorphic DNA (RAPD). Seven hundred and twenty base pairs were sequenced during the analysis of the ITS region, but no significant variation was observed among the 29 strains of F. velutipes. Sixteen out of 40 random primers amplified polymorphic RAPD fragment patterns. The polymorphic levels of RAPD bands by some primers (OPA-2,4,3,9,10,20) were very high in all 29 strains, with 3,030 fragments ranging between 200 and 2,000 bp. Intraspecific genetic dissimilarity of the 29 strains was calculated to range from 3.3% to 45% by Nei-Li's method using these 3,030 RAPD bands. The genetic variation among Korean strains was relatively high, with dissimilarities ranging between 17% and 38.6%. In the Neighbor-Joining analysis using the genetic dissimilarities based on RAPD, all 29 strains were classified into 5 clusters. Strains in each cluster showed specific characteristics according to their origin and strains. These results suggested that OPA and OPB primers could be used for developing molecular genetic markers and screening of unidentified (F. velutipes) strains.

Molecular Characterization of Small-Spored Alternaria Species (소형의 포자를 형성하는 Alternaria 균류의 분자생물학적 특징)

  • Kim, Byung-Ryun;Park, Myung-Soo;Cho, Hye-Sun;Yu, Seung-Hun
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.56-65
    • /
    • 2005
  • To establish taxonomic system of morphologically similar species of small-spored Alternaria, phylogenetic analysis of internal transcribed spacer (ITS 1, ITS 2 and 5.8S rDNA) and mitochondrial small subunit (mt SSU) rDNA sequences and URP-PCR fingerprinting analysis from 11 species ofAlternaria were performed. Phylogenetic analysis of ITS and mt SSU rDNA sequences revealed that 10 out of 11 species of the smallspored Alternaria were phylogenetically identical with a bootstrap value of 100%. A. infectoria only was phylogenetically differentiated from the other species. The results suggest that the 10 small-spored Alternaria species are very closely related evolutionally and the markers can not be used for differentiation of the smallspored Alternaria species. URP-PCR fingerprinting analysis from eleven species of smallspored Alternaria using 10 URP primers showed that it was possible to differentiate the species, although genetic similarities were found among the species. The Alternaria sp. from common pokeweed could be distinguished from other species by URP-PCR analysis, and it was considered as a new species. A. infectoria could be easily distinguished from the other 10 species by phylogenetic analysis of ITS and mt SSU rDNA sequences and the URPPCR fingerprinting analysis.

Discovery of a new primer set for detection and quantification of Ilyonectria mors-panacis in soils for ginseng cultivation

  • Farh, Mohamed El-Agamy;Han, Jeong A.;Kim, Yeon-Ju;Kim, Jae Chun;Singh, Priyanka;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Background: Korean ginseng is an important cash crop in Asian countries. However, plant yield is reduced by pathogens. Among the Ilyonectria radicicola-species complex, I. mors-panacis is responsible for root-rot and replant failure of ginseng in Asia. The development of new methods to reveal the existence of the pathogen before cultivation is started is essential. Therefore, a quantitative real-time polymerase chain reaction method was developed to detect and quantify the pathogen in ginseng soils. Methods: In this study, a species-specific histone H3 primer set was developed for the quantification of I. mors-panacis. The primer set was used on DNA from other microbes to evaluate its sensitivity and selectivity for I. mors-panacis DNA. Sterilized soil samples artificially infected with the pathogen at different concentrations were used to evaluate the ability of the primer set to detect the pathogen population in the soil DNA. Finally, the pathogen was quantified in many natural soil samples. Results: The designed primer set was found to be sensitive and selective for I. mors-panacis DNA. In artificially infected sterilized soil samples, using quantitative real-time polymerase chain reaction the estimated amount of template was positively correlated with the pathogen concentration in soil samples ($R^2=0.95$), disease severity index ($R^2=0.99$), and colony-forming units ($R^2=0.87$). In natural soils, the pathogen was recorded in most fields producing bad yields at a range of $5.82{\pm}2.35pg/g$ to $892.34{\pm}103.70pg/g$ of soil. Conclusion: According to these results, the proposed primer set is applicable for estimating soil quality before ginseng cultivation. This will contribute to disease management and crop protection in the future.

Characterization of beer-spoilage microorganism and its rapid detection by specific PCR primer (맥주오염미생물의 동정과 specific PCR primer의한 신속한 검출 방법)

  • Lee, Taek-In;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.141-147
    • /
    • 2008
  • Several contaminated bacteria such as Lactobacillus brevis and Pediococcus damnosus in beer production cause beer spoilage by producing off flavours and turbidity. Detection of these organisms is complicated by the strict anaerobic conditions and lengthy incubation times required for their cultivation, consequently there is a need for more rapid detection methods. Recently, two contaminated strains were isolated from vessel of beer production and identified as Lactobacillus species by API kit identificaton as well as 16S-23S ITS sequencing analyses. Two isolated strains were named as Lactobacillus sp. HLA1 and Lactobacillus HLB2, respectively. A polymerase chain reaction (PCR) method was developed for the rapid and specific detection of Lactobacillus sp.. Two sets of primer pairs (HLA1-F/HLA1-R and HLB2-F/HLB2-R) were designed for the amplification of a 1576 base pair (bp) fragment of the HLA1 16S-23S rRNA gene and 1888 bp fragement of the HLB2 16S-23S rRNA. Amplified PCR products were highly specific to detect corresponding bacteria when other contaminated strains were used as PCR templates. However, detection of both strains were limited when $100{\mu}{\ell}$ of cultured samples were mixed with $100m{\ell}$ of beer sample in arbitrary manner. The sensitivity of the assay still needs to be improved for direct detection of the small amounts of bacteria present in beer.

  • PDF

Estimating the Physical Demand of Waterproofing Worker

  • Lim, Tae-Kyung;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.101-103
    • /
    • 2015
  • Scientific methods that measure the physical demand requirements of a construction operation have not been arrived at maturity in construction community. It is attributed to the difficulty involved in performing controlled experiments on the operation and its' volatile jobsite environment. This paper presents a method that measures the physical demand requirement of the waterproofing activity and verifies the differences between various operations (e.g., a primer painting and a polyurethane coating) consisting of the activity. Two hypotheses, which are involved in the operations, are summarized as follows: [Hypothesis 1] when one performs the same amount of work; the one's average heart rate required for the polyurethane coating operation is higher than that required for the primer painting operation. [Hypothesis 2] when one performs the same amount of work, the one's break time required for the polyurethane coating operation is longer than that required for the primer painting operation.

  • PDF

Detection of Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus and Listeria monocytogenes in Kimchi by Multiplex Polymerase Chain Reaction (mPCR)

  • Park, Yeon-Sun;Lee, Sang-Rok;Kim, Young-Gon
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.92-97
    • /
    • 2006
  • We developed an mPCR assay for the simultaneous detection, in one tube, of Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus and Listeria monocytogenes using species-specific primers. The mPCR employed the E. coli O157:H7 specific primer Stx2A, Salmonella spp. specific primer Its, S. aureus specific primer Cap8A-B and L. monocytogenes specific primer Hly. Amplification with these primers produced products of 553, 312, 405 and 210 bp, respectively. All PCR products were easily detected by agarose gel electrophoresis, and the sequences of the specific amplicons assessed. Potential pathogenic bacteria, in laboratory-prepared and four commercially available kimchi products, were using this mPCR assay, and the amplicons cloned and sequenced. The results correlated exactly with sequences derived for amplicons obtained during preliminry tests with known organisms. The sensitivity of the assay was determined for the purified pathogen DNAs from four strains. The mPCR detected pathogen DNA at concentrations ranging from approximately 0.45 to $0.05\;pM/{\mu}l$. Thus, this mPCR assay may allow for the rapid, reliable and cost-effective identification of four potentially pathogens present in the mixed bacterial communities of commercially available kimchi.

A New Multiplex-PCR for Urinary Tract Pathogen Detection Using Primer Design Based on an Evolutionary Computation Method

  • Garcia, Liliana Torcoroma;Cristancho, Laura Maritza;Vera, Erika Patricia;Begambre, Oscar
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1714-1727
    • /
    • 2015
  • This work describes a new strategy for optimal design of Multiplex-PCR primer sequences. The process is based on the Particle Swarm Optimization-Simplex algorithm (Mult-PSOS). Diverging from previous solutions centered on heuristic tools, the Mult-PSOS is selfconfigured because it does not require the definition of the algorithm's initial search parameters. The successful performance of this method was validated in vitro using Multiplex-PCR assays. For this validation, seven gene sequences of the most prevalent bacteria implicated in urinary tract infections were taken as DNA targets. The in vitro tests confirmed the good performance of the Mult-PSOS, with respect to infectious disease diagnosis, in the rapid and efficient selection of the optimal oligonucleotide sequences for Multiplex-PCRs. The predicted sequences allowed the adequate amplification of all amplicons in a single step (with the correct amount of DNA template and primers), reducing significantly the need for trial and error experiments. In addition, owing to its independence from the initial selection of the heuristic constants, the Mult-PSOS can be employed by non-expert users in computational techniques or in primer design problems.

Non-Invasive Sex Determination of Asiatic Black Bear (Ursus thibetanus) via Sex-Specific Amplification of the Amelogenin Gene

  • Baek-Jun Kim
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.154-158
    • /
    • 2023
  • The Asiatic black bear, Ursus thibetanus, is among the most threatened or endangered species in Asia. For its conservation and management, sex identification of U. thibetanus using non-invasive samples (e.g., hair and/or feces) is potentially valuable. In this study, a non-invasive molecular method for sex identification of U. thibetanus samples collected from various countries was first utilized, and it was based on polymerase chain reaction (PCR) amplification of the amelogenin gene via PCRs. Thirty-three bear DNA samples, extracted not only from blood (n=9) but also from hair (n=18) and feces (n=6), were used. We performed sex-specific PCR amplifications of the amelogenin gene using a primer set, SE47 and SE48. The primer set could successfully amplify a single X-specific band for females and both X- and Y-specific bands for males from all blood (100%) and hair (100%) samples. In addition, the primer set could distinguish the sex of bears in four out of a total of six fecal samples (approximately 67%). This study's findings suggest that this molecular method can be applied to sex identification of Asiatic black bears from various Asian regions using non-invasive samples, such as hair and feces.

Development of an RT-PCR assay and its positive clone for plant quarantine inspection of American plum line pattern virus in Korea

  • Da-Som Lee;Junghwa Lee;Seong-Jin Lee;Seungmo Lim;Jaeyong Chun
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.873-883
    • /
    • 2022
  • American plum line pattern virus (APLPV), a member of the genus Ilarvirus in the family Bromoviridae, is one of the plant quarantine pathogens in Korea. In this study, 15 candidate primer sets were designed and examined to develop a reverse transcription polymerase chain reaction (RT-PCR) assay for plant quarantine inspection of APLPV. Using APLPV-infected and healthy samples, the primer sets were assessed for APLPV detection. To confirm the occurrence of nonspecific reactions, six ilarviruses (Apple mosaic virus, Asparagus virus 2, Blueberry shock virus, Prune dwarf virus, Prunus necrotic ringspot virus, and Tobacco streak virus) and 10 target plants (Prunus mume, P. yedoensis, P. persica, P. armeniaca, P. dulcis, P. tomentosa, P. avium, P. glandulosa, P. salicina, and P. cerasifera) were examined. Finally, two primer sets were selected. These primer sets could generate the expected amplicons even with at least 1 ng of the total RNA template in concentration-dependent amplifications. In addition, a positive clone was developed for use as a positive control in the abovementioned RT-PCR assay.