• Title/Summary/Keyword: ITO thin films

Search Result 528, Processing Time 0.028 seconds

The effect on characteristic of ITO(glass) by polyimide thin film process (Polyimide 막 공정이 ITO Glass의 특성에 미치는 영향)

  • Kim, Ho-Soo;Kim, Han-Il;Jung, Soon-Won;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.857-860
    • /
    • 2002
  • The material that is both conductive in electricity and transparent to the visible-ray is called transparent conducting thin film. It has many field of application such as solar cell, liquid crystal display, transparent electrical heater, selective optical filter, and a optical electric device. In this study, indium tin oxide (ITO ; Sn-doped $In_2O_3$) thin films were deposited on $SiO_2$/soda-lime glass plates by a dc magnetron sputtering technique. The crystallinity and electrical properties of the films were investigated by X-ray diffraction(XRD), atomic force microscopy (AFM) scanning and 4-point probe. The optical transmittance of ITO films in the range of 300-1000nm were measured with a spectrophotometer. As a result, we obtained polycrystalline structured ITO films with (222), (400), and (440) peak. Transmittance of all the films were higher than 90% in the visible range.

  • PDF

Transparent Conductive ITO thin flims for Liquid Crystal Display (액정표시소자용 ITO 투명전극의 특성에 관한 연구)

  • Kim, H.S.;Kim, D.Y.;Choi, B.K.;Koo, K.W.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1553-1555
    • /
    • 2003
  • Coatings on glass with highly transparent conducting oxide films(TCOs) are performed mostly by using indium tin oxide(ITO). This Oxide material is very common for applications where both high electrical conductivity. Photovoltaic cells, transparent electrical heater, selective optical filter, and a optical transmittance are essential. In this study, ITO thin films were deposited on $SiO_2$/soda-line glass plates by a dc magnetron sputtering technique. The crystallinity and electrical properties of the films were investigated by X-ray diffraction(XRD), atomic force microscopy(AFM) scanning and 4-point probe. The optical transmittance of ITO films in the range of 300-800nm were measured with a spectrophotometer. As a result, we obtained polycrystalline structured ITO films with (222), (400), and (440) peak. Transmittance of all the films were higher than 90% in the visible range.

  • PDF

Chromaticity(b*), Sheet Resistance and Transmittance of SiO2-ITO Thin Films Deposited on PET Film by Using Roll-to-Roll Sputter System (롤투롤시스템을 이용하여 PET 필름위에 제조된 SiO2-ITO 박막의 색도(b*), 면저항과 투과도 연구)

  • Park, Mi-Young;Kang, Bo-Gab;Kim, Jung-Soo;Kim, Hye-Young;Kim, Hu-Sik;Lim, Woo-Taik;Choi, Sik-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.255-262
    • /
    • 2011
  • This paper has relatively high technical standard and experimental skill. The fabrication of TCO film with high transparency, low resistance and low chromaticity require exact control of several competing factors. This paper has resolved these problems reasonably well, thus recommended for publication. Indium tin oxide(ITO) thin films were by D.C. magnetron roll-to-roll sputter system utilizing ITO and $SiO_2$ targets of ITO and $SiO_2$. In this experiment, the effect of D.C. power, winding speed, and oxygen flow rate on electrical and optical properties of ITO thin films were investigated from the view point of sheet resistance, transmittance, and chromaticity($b^*$). The deposition of $SiO_2$ was performed with RF power of 400W, Ar gas of 50 sccm and the deposition of ITO, DC power of 600W, Ar gas of 50 sccm, $O^2$ gas of 0.2 sccm, and winding speed of 0.56m/min. High quality ITO thin films without $SiO_2$ layer had chromaticity of 2.87, sheet resistivity of 400 ohm/square, and transmittance of 88% and $SiO_2$-doped ITO Thin film with chromaticity of 2.01, sheet resistivity of 709 ohm/square, and transmittance of more than 90% were obtained. As a result, $SiO_2$ was coated on PET before deposition of ITO, their chromaticity($b^*$) and transmittance were better than previous results of ITO films. These results show that coating of $SiO_2$ induced arising chromaticity($b^*$) and transmittance. If the thickness of $SiO_2$ is controlled, sheet resistance value of ITO film will be expected to be better for touch screen. A four point probe and spectrophotometer are used to investigate the properties of ITO thin films.

Effect of the Surface Roughness of ITO Thin Films on the Characteristics of OLED Device (ITO 박막의 표면 거칠기에 따른 OLED 소자의 특성)

  • Lee, Bong-Kun;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.49-52
    • /
    • 2009
  • We have investigated the effect of the surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of ITO thin films, we have processed photolithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the ITO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the ITO thin films. Device structure was ITO/$\alpha$-NPD/DPVB/Alq3/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer (minolta CS-1000A). The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

  • PDF

Effect of Substrate Temperature on Characteristics of IZTO and ITO Thin Films Deposited by Pulsed DC Magnetron Sputtering System

  • Lee, Chang-Hun;Bae, Jung-Ae;Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Choi, Byung-Hyun;Ji, Mi-Jung;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.92-92
    • /
    • 2011
  • IZTO and ITO thin films with a thickness of 200nm were deposited on Corning glass substrate to investigate the effects of substrate temperature on their electrical and optical properties by using pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt.%, ZnO 15 wt.%, SnO2 15 wt.%) and ITO (In2O3 90 wt.%, SnO2 10 wt.%). We investigated the structural, electrical, and optical properties of IZTO and ITO films. The structural and electrical properties of both films are sensitive on the substrate temperature. As the substrate temperature is increased, the electrical resistivity of ITO films is improved, but that of IZTO film increase over than $100^{\circ}C$. All IZTO and ITO thin films have good optical properties, which showed an average of transmittance over 80%. As a result, IZTO films can be a possible material for flexible display due to the low processing temperature.

  • PDF

Mechanical Properties of ITO / Glass Thin Film by Indentation Method (나노인덴터에 의한 ITO / Glass 박막재의 기계적 특성)

  • Yoon, Han-Ki;Kim, Do-Hyoung;Shin, Do-Hoon;Murakami, Ri-Ichi
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.59-63
    • /
    • 2007
  • The thin film of indium tin oxide (ITO) was prepared using the inclination opposite target type DC magnetron sputtering equipment onto the glass substrate at room temperature, using oxidized ITO with In2O3 and SnO2in a weight ratio of 9:1. The elastic modulus and hardness of the ITO thin films, prepared at different deposition conditions, were determined through anano-indentation experiment. The work pressure was varied from $2.6{\times}10-1\;to\;8.3{\times}10-1Pa$. The results show that the variation of work pressure during film deposition could vary significantly, according to the elastic modulus and hardness of the ITO thin films. It also can be seen that a minimum value exists in the film resistivity for the ITO thin films, prepared according to the variation of work pressure. However, the ITO film produced at room temperature had a microstructure in which a X ray diffraction peak is not clear, regardless of the work pressure.

Effect of Work Function of Zn-doped ITO Thin Films on Characteristics of Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지 특성에 대한 Zn 도핑된 ITO 박막의 일함수 효과)

  • Lee, Seung-Hun;Tark, Sung-Ju;Choi, Su-Young;Kim, Chan-Seok;Kim, Won-Mok;Kim, Dong-Hhwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.491-496
    • /
    • 2011
  • Transparent conducting oxides (TCOs) used in the antireflection layer and current spreading layer of heterojunction solar cells should have excellent optical and electrical properties. Furthermore, TCOs need a high work function over 5.2 eV to prevent the effect of emitter band-bending caused by the difference in work function between emitter and TCOs. Sn-doped $In_2O_3$ (ITO) film is a highly promising material as a TCO due to its excellent optical and electrical properties. However, ITO films have a low work function of about 4.8 eV. This low work function of ITO films leads to deterioration of the conversion efficiency of solar cells. In this work, ITO films with various Zn contents of 0, 6.9, 12.7, 28.8, and 36.6 at.% were fabricated by a co-sputtering method using ITO and AZO targets at room temperature. The optical and electrical properties of Zn-doped ITO thin films were analyzed. Then, silicon heterojunction solar cells with these films were fabricated. The 12.7 at% Zn-doped ITO films show the highest hall mobility of 35.71 $cm^2$/Vsec. With increasing Zn content over 12.7, the hall mobility decreases. Although a small addition of Zn content increased the work function, further addition of Zn content over 12.7 at.% led to decreasing electrical properties because of the decrease in the carrier concentration and hall mobility. Silicon heterojunction solar cells with 12.7 at% Zn-doped ITO thin films showed the highest conversion efficiency of 15.8%.

Properties of ITO (Indium Tin Oxide) Thin Films Prepared by Magnetron Sputtering Using DC and Pulse Modes

  • Hwang, Man-Soo;Lee, Hye-Jung;Jeong, Heui-Seob;Seo, Yong-Woon;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.842-845
    • /
    • 2002
  • We report on the properties of ITO thin films prepared by dc and pulse magnetron sputtering at low temperature. The electrical, optical, and surface properties of the films prepared by dc and pulse magnetron sputtering were compared. We discuss the role the pulse power plays in determining ITO thin film properties that are important in flat panel applications.

  • PDF

Optical and Electrical Properties of ITO/Ni/ITO Thin Films (ITO/Ni/ITO 박막의 광학적 전기적 특성 연구)

  • Kim So-Ra;Seo Jung-Eun;Kim Sang-Ho;Lee In-Seon;Kim Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.55-59
    • /
    • 2005
  • ITO/Ni/ITO thin films were deposited on the PET by RF magnetron sputtering. Dependance of the process parameters such as deposition pressure, positions of Ni layer, on the transmittance, reflectance and sheet resistance of ITO/Ni/ITO film were investigated. When the Ni layer is placed at the center of ITO and deposition pressure is low, ITO/Ni/ITO films showed better optical and electrical properties. At these conditions, the transmittance, reflectance and sheet resistance of the ITO film were $90\%,\;0.38\%$ and $185\Omega/\Box$ respectively.

Effect of Hydrogen in ITO(Indium Tin Oxide) Thin Films Etching by Low Temperature Plasma at Atmospheric Pressure (대기압 저온 플라스마에 의한 ITO(Indium Tin Oxide)박막 식각의 수소(H$_2$)효과)

  • Lee, Bong-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.12-16
    • /
    • 2002
  • It is confirmed that the ITO(Indium Tin Oxide) thin films can be etched by low-temperature plasma at atmospheric pressure. The etching happened deepest at a hydrogen flow rate of 4 sccm, and the etch rate was 120 /min. The etching speed corresponded to the H$\alpha$* emission intensity The etching mechanism of the ITO thin films is as follows; thin films were reduced by H$\alpha$*, and the metal compound residues were detached from the substrate by reacting on the CH* The etching was started after etching time of initial 50 sec and above the threshold temperature of 145$^{\circ}C$. The activation energy of 0.16 eV(3.75 Kcal/mole) was obtained from the Arrehenius plots.