• Title/Summary/Keyword: ITO Sputtering

Search Result 558, Processing Time 0.031 seconds

A Study on the ITO Thin Films on Plastic Substrate Using by Powdery Targ (분말 타겟을 이용한 플라스틱 기판 상의 ITO 박막 제조에 관한 연구)

  • Lee, J.H.;Park, Y.K.;Shin, J.H.;Shin, S.H.;Park, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1683-1685
    • /
    • 1999
  • ITO films on plastic substrate were prepared by DC magnetron sputtering method using powdery target and their properties were investigated as a function of the deposition conditions. As the sputtering power and total pressure were higher, the resistivity of ITO films increased. The optical transmittance deteriorated with increasing sputtering power and thickness. As the total pressure increased, however, the optical transmittance improved at visible region of light. From these results, we could deposited ITO films with $8{\times}10^{-3}{\Omega}-cm$ of resistivity and 80% of transmittance at optimal conditions.

  • PDF

Preparation of ITO Transparent Conductive thin film for Display at Room Temperature (디스플레이용 ITO 투명전도막의 저온 제작)

  • Kim Kyung-Hwan;Kim Hyun-Woong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.4 s.13
    • /
    • pp.5-8
    • /
    • 2005
  • In this study, we prepared the ITO thin film for TOLED(Top-emitting OLED) or flexible display at room temperature using the FTS(Facing Targets Sputtering Apparatus). We observed characteristics of deposited thin films as a function of sputtering conditions. XRD patterns were independence trom oxygen gas flow and input current. But electrical and optical properties were strongly dependence. In the results, we could prepare good properties of ITO thin films resistivity of $4.27X10^{-4}[\Omega-cm]$, transmittance of over 80% at working gas pressure 1[mTorr], input current 0.6[A], oxygen gas ratio 0.3[sccm], at room temperature.

  • PDF

Properties of ITO Transparent Conducting Film by DC Magnetron Sputtering Method (DC 마그네트론 스퍼터법에 의한 ITO 투명전도막 특성)

  • Park, Kang-Il;Kim, Byung-Sub;Lim, Dong-Gun;Park, Gi-Yub;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.95-98
    • /
    • 2003
  • Tin doped indium oxide(ITO) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors, were prepared by using the capacitively coupled DC magnetron sputtering method. The influence of the substrate temperature, working gas pressure and deposition time on the electrical, optical and morphological properties were investigated experimentally. ITO films with the optimum growth conditions showed resistivity of $2.36{\times}10^{-4}(\Omega}-cm$ and transmittance of 86.28% for a film 680nm thick in the wavelength range of the visible spectrum.

  • PDF

Effect of Post annealing of ZnO:Al films produced by RF-Sputtering (RF-Sputtering 법을 이용한 ZnO:Al 박막의 후 열처리에 따른 특성 변화)

  • Lee, Dong-Jin;Lee, Jae-Hyeong;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.13-14
    • /
    • 2007
  • 투명전극으로 사용되는 ITO는 우수한 전기적, 광학적 특성으로 인하여 널리 사용되고 있다. 하지만, ITO는 저온공정의 어려움과 ITO의 원료물질인 In의 수급이 불안정하여 원자재의 가격이 높고, 수소 플라즈마에 노출시 열화로 인한 광학적 특성의 변화가 문제점으로 지적되고 있다. 본 논문에서는 ITO 투명전극을 대체하기 위한 실험으로 Al 이 도핑된 ZnO(ZnO:Al) 박막을 상온에서 유리기판 위에 RF 마그네트론 스퍼터 법을 이용하여 제조하였다. 증착된 박막은 ITO물질을 대체하기 위한 투명전극으로의 응용을 위해 후 열처리를 실시하였다. 설정된 열처리 온도는 각각 400도와 300도로 설정하였고 열처리 시간에 따른 변화를 관찰하였다. 열처리된 시편은 각각 XRD, SEM, Hall, U/V 측정을 하여 변화를 관찰하였다.

  • PDF

TOLED 용 ITO 음전극 제작 특성

  • Kim Hyeon-Ung;Geum Min-Jong;Seo Hwa-Il;Kim Gwang-Seon;Kim Gyeong-Hwan
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.106-109
    • /
    • 2005
  • The ITO thin films for Top-Emitting Organic Light Emitting Devices (TOLEDs) were prepared on cell(LiF/Organic Layer/Bottom Electrode : ITO ) by FTS (Facing Targets Sputtering) system under different sputtering conditions which were varying gas pressure, input current and distance of target to target($D_{T-T}$). As a function of sputtering conditions, I-V characteristics of prepared ITO thin films on cell were measured by 4156A (HP). In the results, when the In thin films were deposited at $D_{T-T}$ 70mm and working pressure 1mTorr, the leakage current of ITO/cell was about 11[V] and 5E-6[$mA/cm^2$].

  • PDF

Characteristics of OLED Cells Fabricated with ITO Films Deposited by using Facing Target Sputtering (FTS) System (대향 타겟식 스퍼터링으로 증착한 ITO 박막이 적용된 유기발광다이오드의 특성)

  • Kim, Sangmo;Lee, Sangmin;Keum, Min Jong;Lee, Won Jae;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.71-75
    • /
    • 2018
  • In this study, we prepared OLED cell with ITO (Indium Tin Oxide) films grown on the glass substrate by facing targets sputtering. Before fabrication of OLED cells, we investigated properties of ITO films deposited at various sputtering conditions. To investigate properties of as-prepared films, we employed four-point probe, UV-VIS spectrometer, X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), hall-effect measurement. As a results, as-prepared ITO films have high transmittance of over 85 % in the visible range (300-800 nm) and a resistivity of under $10^{-4}$ (${\Omega}-cm$). Their resistivity increased as a function of oxygen gas flow and substrate temperature. OLED cell with ITO films were fabricated by thermal evpoeartor. Properties of OLEDs cell referring to properties of ITO films.

The Fabrication of ITO Thin-film O3 Gas Sensors Using R.F. Magnetron Sputtering Method and their Characterization (R.F. Magnetron Sputtering법을 이용한 ITO 박막 오존 가스센서의 제조 및 특성)

  • Kwon, Jung-Bum;Jung, Kyoung-Keun;Lee, Dong-Su;Ha, Jo-Woong;Yoo, Kwang-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.840-845
    • /
    • 2002
  • As an ozone gas sensor, the semiconductor gas sensor which is cheap, portable and simple in use and has a high sensitivity and an excellent selectivity, has been known as an alternative. In the present study, ITO ($In_2O_3 95%,\;SnO_2$ 5%) thin films were deposited on the alumina substrate by using R.F. magnetron sputtering method. The substrate temperature was 300$^{\circ}C$ and 500$^{\circ}C$, respectively and then some specimens were annealed at 500$^{\circ}C$ for 4h in air. ITO gas-sensing films formed crystallines before and after annealing. As results of gas sensitivity measurements to an ozone gas, the sensor deposited at 300$^{\circ}C$ and then annealed has the highest sensitivity (sensible below 1 ppm). As the operating temperature increased gradually, the sensitivity decreased but the response time and stability improved.

Process Optimization of ITO Film on PC Substrate Deposited by In-line Sputtering Method for a Resistive-type Touch Panel (인라인 스퍼터링에 의한 저항막 방식 터치패널용 ITO 기판 제조공정 최적화 기술)

  • Ahn, M.H.;Cho, E.S.;Kwon, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.440-446
    • /
    • 2009
  • Indium tin oxide(ITO) substrate is one of the key components of the touch panel and its sputtering process is dependent on the characteristics of various touch panel, such as driving type, size of panel, and the intended use. In this study, we optimized the sputtering condition of ITO film on polycarbonate(PC) by using in-line sputtering method for the application to resistive type touch panel. We varied the $O_2$/Ar gas ratio, sputtering power, pressure and moving speed of substrate to deposit ITO films at room temperature with the base vacuum of $1{\times}10^{-6}\;torr$. The sheet resistance and its uniformity, the transmittance, the thickness of the ITO film on PC substrate are investigated and analyzed. The optimized process parameters are as follows : the sheet resistance is $500{\pm}50\;{\Omega}$/□, the uniformity of sheet resistance is lower than 10%, the transmittance is higher than 87 % at 550nm, and the thickness is about 120~250. The optimized deposition conditions by in-line sputtering method can be applied to the actual mass production for the ITO film manufacturing technology.

Microstructure and Properties of ITO and ITO/Ag/ITO Multilayer Thin Films Prepared by D.C. Magnetron Sputtering (D.C. 마그네트론 스퍼터링법으로 제조한 ITO 및 ITO/Ag/ITO 박막의 미세조직과 투명 전극 특성)

  • Choi, Yong-Lak;Kim, Seon-Hwa
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.490-496
    • /
    • 2006
  • ITO monolayer and ITO/Ag/ITO multilayer thin films are prepared by D.C. magnetron sputtering method. Ag layer was inserted for applying ITO to a flexible substrate at low temperature. Carrier concentration and carrier mobility of ITO and ITO/Ag/ITO thin films were measured, the transmittance of them also was done. The amorphous phase was confirmed to be combined in addition to (400) and (440) peaks from XRD result of ITO thin film. As the substrate temperature increased, the preferred orientation of (400) appeared. From the result of application of Ag layer at room temperature, the growth of columnar structure was inhibited, and the amorphous phase formed mostly. The ITO/Ag/ITO thin film represented the transmittance of above 80% when the thickness of Ag layer was 50 ${\AA}$, and the concentration of carrier increased up to above 10 times than that of ITO thin film. Finally, since very low resistance of 3.9${\Omega}/{\square}$ was observed, the effective application of low temperature process is expected to be possible for ITO thin film.

Characteristics of Large Area ITO/PET Fabricated by Vacuum Web Coater (진공 웹코터로 제작된 대면적 ITO/PET의 특성 연구)

  • Kim, Ji-Hwan;Park, Dong-Hee;Kim, Jong-Bin;Byun, Dong-Jin;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.516-520
    • /
    • 2007
  • Indium tin oxide, which is used as transparent conducting layer in flexible device, is deposited on PET film by a magnetron sputtering in 300 mm wide roll-to-roll process (vacuum web coating). Sheet resistance, specific resistance and transmittance is differed by sputtering parameters such as working pressures, oxygen partial pressure, and thickness of ITO layer. ITO layer is deposited about 90 nm at roll speed of 0.24 m/min and its sputtering power is 3 kW. From the XRD spectrum deposited ITO layer is verified as amorphous. Under working pressure varied from $3{\times}10^{-4}\;Torr$ to $2{\times}10^{-3}\;Torr$, sheet resistance is lowest at the working pressure of $1{\times}10^{-3}\;Torr$ and its value is from $110\;{\Omega}/{\square}$ to $260\;{\Omega}/{\square}$ at the thickness of 90 nm. Oxygen partial pressure also varies sheet resistance and is optimized at the regime from 0.2% ($1.8{\times}10^{-6}\;Torr$) to 0.6% ($6{\times}10^{-6}\;Torr$). In this oxygen partial pressure sheet resistance is lower than $150\;{\Omega}/{\square}$. As ITO layer thickness increases, sheet resistance decreases down to $21\;{\Omega}/{\square}$ and specific resistance is about $7.5{\times}10.4{\Omega}cm$ in 340 nm thickness ITO layer. Transmittance is measured at the wavelength of 550 nm and is about 90% for 180 nm thickness ITO/PET.