• Title/Summary/Keyword: IR-transmittance

Search Result 127, Processing Time 0.023 seconds

Influence of the SPS heating rate on the optical and mechanical properties of Y2O3-MgO nanocomposites

  • Yong, Seok-Min;Choi, Doo Hyun;Lee, Kisu;Ko, Seok-Young;Cheong, Dong-Ik
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.59-62
    • /
    • 2019
  • Y2O3-MgO nanocomposites are promising materials for hypersonic infrared windows and domes due to their excellent midIR transmittance and mechanical properties. In this work, influence of SPS heating rate on the microstructure, IR transmittance, and mechanical properties of Y2O3-MgO nanocomposites was investigated. It was found that the average grain size decreases with a decreasing heating rate, which can be attributed to high defect concentration by rapid heating and deformation during densification. Also, the residual porosity decreases with a decreasing heating rate, which is ascribed to the enhancement of grain boundary diffusion by a large grain-boundary area (a small grain size). Consequently, high transmittance and hardness were attained by the low heating rate. On the other hand, the mechanical strength showed little difference with the heating rate change, which is somewhat different from the general knowledge on ceramics and will be discussed in this letter.

Optical Transmittance Property of Polycarbonate film at UV Range by ion Implantation (이온주입에 의한 PC(Polycarbonate) 필름의 자외선 영역 광 투과 특성)

  • 이재형;이찬영;김재근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1091-1096
    • /
    • 2003
  • Ion implantation in polymeric materials can induce dramatic chemical modifications, such as bond breaking, cross linking, formation of new chemical products, which have strong influences on the macroscopic properties of the materials. In this study ion implantation was performed onto polymer, PC(polycarbonate), in order to investigate change of the optical transmittance property focusing ultraviolet ray range(200-400nm). PC was irradiated with N, Ar, Kr, Xe ions at the ion energy of 50keV and the dose range of 5 ${\times}$ 10$\^$15/, 1 ${\times}$ 10$\^$16/, 7${\times}$10$\^$16/ ions/$\textrm{cm}^2$. FT-IR, XPS, UV/Vis transmittance spectroscopy measurement technologies were employed to obtain chemical. structural properties and optical transmittance of irradiated polymer. The original PC(unimplanted) is quite transparent that it has more than 88% transmittance in the range UV-A(320∼400nm), but after ion implantation, surface colors were changed to the dark brown and the transmittance of UV ray decreased for all implantation condition, and the absorption edge was shift to visible range with increasing mass of implanted ion species and dose.

Development of UV-IR Camera using IR Module and Improved UV Filter Transmittance (투과율 향상 UV 필터와 IR 모듈을 이용한 자외선-적외선(UV-IR) 카메라 개발)

  • Kim, Young-Seok;Shong, Kil-Mok;Bang, Sun-Bae;Kim, Chong-Min;Choi, Myeong-Il;Kim, Woo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.37-43
    • /
    • 2012
  • UV-IR diagnostic technology is being used for predictive maintenance of high voltage equipment together with IR-thermography and ultrasonic devices. In this paper, the UV-IR camera design, fabrication, and perform a simple test to be take advantage of the diagnostic equipment. UV-IR camera developed a $6.4^{\circ}{\times}4.8^{\circ}$ of the field of view as a conventional camera to diagnose a wide range of slightly enlarged, and power equipment to measure the distance between the camera and the distance meter has been attached. In a distance of 5m with the UV-IR it is possible to detect partial discharge with a PD level of 2.5 pC and a RIV(Radio Influence Voltage) level of $3.6dB{\mu}V$.

Effect of CuO on the Optical and Structural Properties of Phosphate Glass for Near-Infrard Filter (근적외선 필터용 인산계 유리의 광학적 특성 및 구조적 특성에 미치는 CuO 의 영향)

  • Kim, Seong-Il;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Jin-Ho;Kim, Young-Ho;Lee, Jong-Hwa;Choi, Deuk-Kyun
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.657-660
    • /
    • 2009
  • Optical characteristics and structural changes depending on CuO content in phosphate glasses that are used in near-infrared (near-IR) filters were investigated. With phosphate glasses that contain 1-9 mol% CuO, changes in optical transmittance, optical absorption, and color coordinate were measured with a UV-VIS spectrophotometer. An XPS (X-ray photoelectron spectroscopy) analysis was performed to determine valence of copper ion that influences optical characteristics in near-IR filter glasses. Structural changes in glasses depending on CuO content were also analyzed by FT-IR (Fourier transform infrared) and Raman spectrophotometers. From the UV-VIS spectrophotometer results, strong absorption peaks at 220 & 900 nm were found and transmittance was decreased. The color coordinates of the glasses were shifted to the green color direction with CuO addition for increasing absorption of long wavelength range spectra, in spite of the amount of $Cu^{2+}$, which gives a blue color to glasses, and which was increased in XPS results. Also, structural de-polymerization of glasses with CuO addition were found by FT-IR and Raman results.

Non-isothermal Crystallization Behaviors of Ethylene-Tetrafluoroethylene Copolymer (에틸렌-테트라플르오르에틸렌 공중합체의 비등온 결정화 거동)

  • Lee, Jaehun;Kim, Hyokap;Kan, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.803-809
    • /
    • 2012
  • The non-isothermal crystallization behavior of ethylene-tetrafluoroethylene (ETFE) copolymer was investigated by DSC and imaging FTIR analysis. Modified non-isothermal Avrami analysis was applied to interpret the crystallization behavior of ETFE. It was found that the less linearity in ln[-ln(1-X(t))] vs. ln(t) plot was obtained in thermal analysis comparison with imaging FTIR due to relatively small crystallization enthalpy change in ETFE. It means that imaging FTIR measured by overall IR absorption intensity change due to the crystallization was found to be effective to understand the non-isothermal crystallization kinetics of ETFE. In addition, the optical transmittance of ETFE was studied. The crystallite developed by slow cooling caused the light scattering and resulted in the increase of haze and the lowering of transmittance up to 8%. From our results, it was confirmed that cooling rate is an important processing parameter for maintaining optical transmittance of ETFE as a replacement material for glass.

Characteristics of Infrared Blocking, Stealth and Color Difference of Aluminum Sputtered Fabrics

  • Han, Hye Ree
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.4
    • /
    • pp.592-604
    • /
    • 2019
  • This study examines the stealth function of sputtered fabric with an infrared thermal imaging camera in terms of the thermal and infrared (IR) transmittance characteristics. Various base fabrics were selected, infrared imaging was performed, and infrared transmittance was measured. By infrared camera experiment it was found that the sample was concealed because it had a similar color to the surroundings when the aluminum layer was directed toward the outside. In addition, a comparison of the infrared thermographic image of the untreated sample and the sputtered sample in the laboratory showed that the difference in ${\Delta}E$ value ranged from 31 to 90.4 and demonstrated effective concealment. However, concealment was not observed in the case of the 3-layer (Nylon-Al-Nylon) model when a sputtered aluminum layer existed between two nylon layers. The direction of the sputtering layer did not affect the infrared transmittance in the infrared transmittance experiment. Therefore, it seems better to interpret the concealing effect in the infrared thermographic images by using thermal transfer theory rather than infrared transmittance theory. We believe that the results of this study will be applicable to developing high performance smart clothing and military uniforms.

Relation Between Flat-band Voltage and Quantum Efficiency of InSb MWIR Detector (InSb 중적외선 검출기의 Flat-band 전압과 양자효율의 상관관계)

  • Kim, Young-Chul;Eom, JunHo;Jung, Han;Kim, SunHo;Kim, NamHwan;Kim, Young-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.12-15
    • /
    • 2018
  • InSb (III-V compound semiconductor) is used for photodiode to detect the mid-wavelength infrared radiation. Generally the quantum efficiency of InSb IR FPAs(Focal Plane Arrays) is known to be determined by thickness of InSb and transmittance of anti-reflection coating layer. In this study, we confirmed that the C-V characteristics of detector array affects the quantum efficiency of the InSb IR FPAs. We fabricated the IR FPAs with various $V_{fb}$(flat band voltage) values and confirmed the tendency between the $V_{fb}$ value and quantum efficiency of the IR FPAs.

Stealth, electromagnetic interception, and electrical properties of aluminum sputtered clothing materials - Focusing on the density change - (알루미늄 스퍼터링 처리 의류소재의 스텔스 특성과 전자파 차단 및 전기적 특성에 관한 연구 - 밀도 변화를 중심으로 -)

  • Han, Hye Ree
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.4
    • /
    • pp.579-593
    • /
    • 2022
  • This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the △E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.

DC pulse sputter로 제작한 단열필름 컬러화에 대한 연구

  • Lee, Dong-Hun;Park, Eun-Mi;Seo, Mun-Seok;Kim, Hye-Jin;Ha, In-Ho;Jo, Eun-Seon;Han, Geon-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.167.2-167.2
    • /
    • 2016
  • 태양에너지는 전자기파로써 파장에 따라 여러 부분으로 나뉜다. 파장이 780nm 이상인 부분의 영역을 IR (infra Red) 즉 적외선으로 불린다. 이 부분이 열선에 해당하는 부분인데 대부분의 창문에 설치된 커튼이나 vertical 등은 빛을 차단하는 수단일 뿐, 유입되는 열 (적외선)을 차단시킬 수는 없다. 열은 결국 실내의 온도를 높이기 때문에 난방비 등 에너지 손실을 막긴 어렵다. 단열필름은 커튼이나 vertical과 달리 실내로 유입되는 열 (적외선)을 다시 실외로 반사시켜 실내로 유입되는 열을 최소화 한다. 본 연구는 IR 차폐를 목적으로 연구 되었고, 거기서 한 발 나아가 실내 분위기 등을 고려하여 소비자의 구호에 맞는 제품에 더 맞추기 위해 연구되었다. 기존 제품들과 차별된 점은 색상을 위한 추가적인 작업없이 굴절률과 두께 factor 등을 변화시켜 바로 7가지 색을 구현한다는 장점을 가지고 있다. 따라서 가격 경쟁력에서도 우위를 점 할 수 있는 중요한 기술이라 할 수 있겠다. 박막제조 장비로는 DC pulse In-line Sputter를 사용하였으며, 굴절률과 광학적인 두께 측정을 위한 ellipsometer, 그리고 UV-vis 를 통한 Transmittance 측정으로 제품 능력을 확인하였다.

  • PDF

Thermally Stable Photoreactive Polymers as a Color Filter Resist Bearing Acrylate and Cinnamate Double Bonds

  • Cho, Seung-Hyun;Lim, Hyun-Soon;Jeon, Byung-Kuk;Ko, Jung-Min;Lee, Jun-Young;Ki, Whan-Gun
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • Photoreactive polymers as a color filter resist containing both photoreactive acrylate and cinnamate double bonds were synthesized usin two step reactions. The chemical structures of the synthesized polymers were confirmed by $^1H$-NMR and FT-IR spectroscopy. The photoreactive polymers were quite soluble in most common organic solvents and produced excellent quality thin films by spin-coating. The photocuring kinetics of the acrylate and cinnamate double bonds were examined by FT-IR and UV- Vis spectroscopy, which confirmed the excellent photoreactivity of both the acrylate and cinnamate double bonds in the polymers. Upon UV irradiation, photocuring was almost completed within approximately 5 min, irrespective of the type of the prepolymers. The polymers also exhibited superior thermal stability, showing little change in transmittance in the visible region even after heating to $250^{\circ}C$ for one hour. Photolithographic micropatterns could be obtained with a resolution of a few microns.